\ , REX WWw.rexcontrols.com/rex

Monarco HAT driver for the REX Control System
(the MonarcoDrv module)

User guide

REX Controls s.r.o.

Version 2.50.4
Plzen (Pilsen), Czech Republic
2017-05-17


www.rexcontrols.com/rex

Contents

1 The MonarcoDrv driver and the REX Control System
1.1 Introduction . . . . . . . . . . . e
1.2 Installation of the driver on the host computer . . . . .. ... ... ...
1.3 Installation of the driver on the target device (Raspberry Pi) . . . . . ..

2 Including the driver in the project
2.1 Adding the MonarcoDrv driver . . . . . . . . . . .. ... .. ... ... ..
2.2 Configuration dialog of the MonarcoDrv driver . . . . . . . .. .. .. ...

3 Connecting the inputs and outputs in the control algorithm
3.1 Direct input and output signals . . . . . . .. ... o0
3.2 Modbus communication via RS-485 . . . . . . ... ... ... ... ...
3.3 1-Wire sensors and expansion modules . . . . . . . ... ... ... L.

4 Troubleshooting

Bibliography



Chapter 1

The MonarcoDrv driver and the REX
Control System

1.1 Introduction

This manual describes the MonarcoDrv driver for direct access to inputs and outputs of
the Monarco HAT [1]| within the REX Control System. The driver was developed by the
REX Controls company.

For a quick-start and step-by-step instructions see [2].

1.2 Installation of the driver on the host computer

The MonarcoDrv driver is included in the installation package of the Development tools
of the REX Control System. It is necessary to select the corresponding package in the
installer. The REX Control System typically installs to the
C:\Program Files (x86)\REX Controls\REX <version> folder.

The following files are copied to the installation folder:

Bin\MonarcoDrv_H.d11l — Configuration part of the MonarcoDrv driver.

Doc\PDF\ENGLISH\MonarcoDrv_ENG.pdf — This user manual.

1.3 Installation of the driver on the target device (Rasp-
berry Pi)

If there is no RexCore runtime module installed on your Pi, install it first using the Getting
started guide of the REX Control System [2]. The installation includes all necessary
drivers including MonarcoDrv.

If you want to install MonarcoDrv separately, it can be done from the command line
of Raspberry Pi using the command
sudo apt-get install rex-monarcodrvt



Chapter 2

Including the driver in the project

The driver is included in the project as soon as the driver is added to the project main
file and the inputs and outputs are connected in the control algorithm(s).

2.1 Adding the MonarcoDrv driver

The project main file with the MonarcoDrv driver included is shown in Figure 2.1.
There are 2 blocks which must be added to the project to include the driver. First the
MODULE block is attached the the Modules output of the EXEC function block. It must be
renamed to RPiDrv.

The other block of type IODRV is connected to the Drivers output of the main EXEC
block. The name of this block (MNR, see Fig. 2.1), is the prefix of all input and output
signals provided by this driver.

The most important parameters of I0DRV block are:

module — name of the module linked to the driver, in this case MonarcoDrv — the name

is CASE SENSITIVE!
classname — class of the driver, in this case MonarcoHatDrv
cfgname — name of the driver configuration file, e.g. monarcohat.rio

factor — multiple of the EXEC block’s tick parameter defining the driver’s task execu-
tion period

The above mentioned parameters of the I0ODRV function block are configured in Rex-
Draw program. The configuration dialog is shown also in Fig. 2.1.

The Configure button opens the configuration dialog of the MonarcoDrv driver,
which is described in chapter 2.2.

2.2 Configuration dialog of the MonarcoDrv driver

The configuration dialog can be activated from RexDraw by pressing the Configure
button in the parameters dialog of the IODRV block (see chapter 2.1).



W monarco_exec.mdl - RexDraw - [monarco_exec] — O *
J File Edit View Compiler Target Project Tools Settings Window Help
EEEIE R T T T
FOnarco._.. E@ 7 Block properties
Block  Font  Colors
Miecutes| — o mah ‘ .
i ia\odi name: | i?lock type:
- a MNR exedib[ODRY
Drivers
MNR Block type description:
Archivesp | The REX Control System inputfoutput driver
QTask Description Runtime Orientation
[Jalternate name placement [CPermanent [ biagnostics [OF O
Leveld orev_next [ Show name [JHalt [JLogaging O« o~
monarco_task
Lavelt Parameters:
MNo. Parameter Value Minimum Maximum Type
LevelZ
1 module MonarcoDrv String
2 dassname MonarcoHatDry String
Level2
3 cfgname monarcohat. rio String
EEC 4 factor 1 1 Long
5 stack 10240 1024 Long
[} pri 3 1 31 Long
7 timer off Bool
I/O driver dass name
| MonarcoHatDry | Configure
Project: F\MonarcoDni\monarco_exec.mdl Target: Not connected CAP [NUM |SCRL

Figure 2.1: An example of project main file with the MonarcoDrv driver included

The RS-485 section configures the properties of the RS-485 bus for connecting to
external devices.

IMPORTANT: Note that the internal communication between the CPU and the
MCU of the Monarco HAT uses UART communication (/dev/ttyAMAO on the Raspberry
Pi) at 115200 baudrate, 8 bits per byte, no parity, 1 stop bit. These are the values you
have to use in the Modbus driver configuration if you are willing to use it. For details
about the internal structure of the Monarco HAT visit http://www.monarco. io.

The SPI configuration section defines the communication between the CPU and the
Monarco HAT MCU (/dev/spidev0.0 on the Raspberry Pi, maximum clock speed is
4 MHz).


http://www.monarco.io

RS-485 Configuration

Baudrate |9600

O Parity none

Data bits |8

Stop bits | one

SPI Configuration

SPI Device |,|'dev,|'spidev[].[]

M D N A R c U SPIClock 4000000

4

Cancel

Figure 2.2: Monarco HAT configuration dialog




Chapter 3

Connecting the inputs and outputs
in the control algorithm

The inputs and outputs of the driver must be interconnected with the individual tasks
(.md1 files). The individual tasks (QTASK or TASK blocks) are connected to the QTask,
LevelO,..., Level3 outputs of the main EXEC block.

3.1 Direct input and output signals

The inputs and outputs of the MonarcoDrv driver can be accessed as shown in Fig. 3.1.

One block of the From type allowing the user to read one input has the Goto tag
set to MNR__DI1, while the other has this tag set to MNR__DI2. The number in the flag
corresponds with the terminal pinout. The block of Goto type allowing the user to set
(write) one output has the Goto tag) set to MNR__D03, the other output is accessed via
the MNR__D04 flag. The blocks always have the MNR prefix right at the beginning of the
tag followed by two _ characters (underscore).

Similarly for other pins we can use e.g. the flags:

e Goto, MNR__D04 — digital output 4

e Goto, MNR__AQO1 — analog output 1

e From, MNR__AI1 — analog input (voltage mode 0..10V)

e From, MNR__AI2C — analog input (current mode 0..20mA)
e Goto, MNR__LED5 — Onboard LED 5

e Goto, MNR__LED5_Mask — Only when TRUE, onboard LED5 can be controlled from
algorithm

In general, the link to a particular signal consists of the driver name MNR, two under-
score characters __, signal reference, signal number and an optional symbol defining the
mode of the input. The terminal numbering of the Monarco HAT is shown in Fig. 3.2.



Y monarco_exec.mdl - RexDraw - [menarco_exec] — O *
J File Edit View Compiler Target Projedt Tools Settings Window Help
EEEIE G R N L EEE L LI
-
mnalco_...EI mcnar-:c:_tasl'. EI@
Medules fprev_next}
MonarcoDrv
Drivers|—W{prev_nexh
MNR
MNR__DO3 |
Archives
QTask U a MNR__DO4 |
HLD et
TIMER_10S
Leveld [prev_nextf Lgulyr 1
manarco_task w2 y2
2
Levell i
RUN y4
CHE_RUN IRT g
Level2 TRND
Level3
EXEC
Project: F\MonarcoDnAmonarco_exec.mdl Target: Mot connected CAP [NUM [SCRL

Figure 3.1: Example of input and output flags of the MonarcoDrv driver

3 55 5
£+ g N <00 on
3¥0233332:2233
Y2§3838+7Y553%2
i s s
OOEEO®OMWEG@@EE
OOEOOOOEGO®EHE@E

S |5 ] | e e | s |
Z 1l oA mAa |l A -
= =~ =
0855328855583
G2 200 ; -4
- =)

Figure 3.2: Terminal pinout for Monarco HAT.

All the input and output flags for the Monarco HAT are available in the example
project 0121-00, which is part of the installation package. The most up-to-date examples
are available at https://github.com/rexcontrols/REXexamples/archive/v2.50.zip.


https://github.com/rexcontrols/REXexamples/archive/v2.50.zip

3.2 Modbus communication via RS-485

The RS-485 bus provides a standard interface to communicate with external devices
(servo drives, energy meters, etc.) or to expand the I/O capabilities of the Monarco HAT
itself. Modbus communication is typically used. There is a separate driver for Modbus
communication in the REX Control System, see [3].

IMPORTANT: Note that the internal communication between the CPU and the
MCU of the Monarco HAT uses UART communication (/dev/ttyAMAO on the Raspberry
Pi) at 115200 baudrate, 8 bits per byte, no parity, 1 stop bit. These are the values you
have to use in the Modbus driver configuration if you are willing to use it. For details
about the internal structure of the Monarco HAT visit http://www.monarco. io.

Figure 3.3 shows an example project main file with multiple I/O drivers.

3.3 1-Wire sensors and expansion modules

The 1-Wire bus provides additional interface to expand the I/O capabilities of the
Monarco HAT itself (e.g. using 1-Wire temperature sensors, relative humidity sensors,
relay modules etc.). There is a separate driver for 1-Wire communication in the REX
Control System, see [4].

Figure 3.3 shows an example project main file with multiple I/O drivers.

Medules —HprE\; nex‘tl—b-lprev nextl—b-lpn:-v n|:-xt|}

MonarcoDrv CrwsDirv MbDrv
Drivers —HprE\; I'IEX't'—.'lpI'E"i nEx‘tl—.-lpn:-v nl:-x‘tl—h-lprEv nEx‘tP
MMR OwWs MBM MTM

Archivesp
QTaskp

Leveld [prev_next]

monarce_task

Lewvell
Level2 B

Level3p

EXEC

Figure 3.3: A project with MonarcoDrv, 1-Wire, Modbus RTU and Modbus TCP drivers


http://www.monarco.io

Chapter 4

Troubleshooting

In the case that the diagnostic tools of the REX Control System (e.g. RexView) report
unexpected or incorrect values of inputs or outputs, it is desirable to test the functionality
outside the REX Control System (command line tools, simple scripts, etc.). Also double
check the configuration — the most common problems include:

Hardware problem — incorrect wiring.

Internal communication problem — SPI bus, I12C bus or UART is occupied by another
service or program.

In the case that the given input or output works with other software tools and does not
work in the REX Control System, report the problem to us, please. E-mail is preferred,
reach us at support@rexcontrols.com. Please include the following information in your
description to help us process your request as soon as possible:

e [dentification of the REX Control System you are using. Simply export it to a file
using the RexView program (Target — Licensing... — Export).

e Short and accurate description of your problem.

e The configuration files of the REX Control System (.mdl and .rio files) reduced
to the simplest case which still demonstrates the problematic behavior.


mailto:support@rexcontrols.com

Bibliography

[1] REX Controls s.r.o.. Internet webpage www.monarco.io, 2017.
[2] REX Controls s.r.o.. Getting started with REX and Monarco HAT, 2017.
[3] REX Controls s.r.o.. Modbus driver of the REX Control System — User guide, 2013.

[4] REX Controls s.r.o.. QwsDrv driver of the REX Control System for 1-Wire devices
— user guide, 2013.

Documentation reference number: 8269

10


www.monarco.io

	1 The MonarcoDrv driver and the REX Control System
	1.1 Introduction
	1.2 Installation of the driver on the host computer
	1.3 Installation of the driver on the target device (Raspberry Pi)

	2 Including the driver in the project
	2.1 Adding the MonarcoDrv driver
	2.2 Configuration dialog of the MonarcoDrv driver

	3 Connecting the inputs and outputs in the control algorithm
	3.1 Direct input and output signals
	3.2 Modbus communication via RS-485
	3.3 1-Wire sensors and expansion modules

	4 Troubleshooting
	 Bibliography

