
www.rexcontrols.com/rex

1-Wire driver for the REX Control System
(the OwsDrv module)

User guide

REX Controls s.r.o.

Version 2.50.4
Plzeň (Pilsen), Czech Republic

2017-05-17

www.rexcontrols.com/rex

Contents

1 The OwsDrv driver and the REX Control System 2
1.1 Introduction . 2
1.2 System requirements . 2
1.3 Installation of the driver on the host computer 2
1.4 Installation of the driver on the target device 3

1.4.1 Running the 1Wire server . 3

2 Including the driver in the project 5
2.1 Adding the OwsDrv driver . 5
2.2 Connecting the signals in the algorithm 5

3 Driver configuration 8
3.1 Configuration dialog . 8
3.2 Use of alarms of the owfs program . 10
3.3 Special signals . 13

4 Troubleshooting 15

Bibliography 16

1

Chapter 1

The OwsDrv driver and the REX
Control System

1.1 Introduction

This manual describes the OwsDrv driver for data exchange between the REX Control
System and various devices supporting the 1-Wire protocol [1]. The OwsDrv driver relies
on the OWFS 1-Wire File System [2], namely the owserver module.

It is possible to communicate with any device supported by the OWFS.

1.2 System requirements

In order to use the driver, the host computer (development) and the target computer
(runtime) must have the following software installed:

Host computer
Operating system one of the following: Windows 7/8/10
REX Control System version for Windows operating system

Target device
REX Control System runtime core for GNU/Linux
IO driver version for GNU/Linux
OWFS version for GNU/Linux

1.3 Installation of the driver on the host computer

The OwsDrv driver is included in the installation package of the Development tools of the
REX Control System. It is necessary to select the corresponding package in the installer.
The REX Control System typically installs to the
C:\Program Files (x86)\REX Controls\REX <version> folder.

The following files are copied to the installation folder:

2

Bin\OwsDrv_H.dll – Configuration part of the OwsDrv driver.

Doc\PDF\ENGLISH\OwsDrv_ENG.pdf – This user manual.

1.4 Installation of the driver on the target device

If there is no RexCore runtime module installed on your target device, install it first using
the Getting started guide of the REX Control System for the corresponding platform[3].

In order to communicate with the 1-Wire devices from the REX Control System it
is necessary to install the owserver and ow-shell packages of the OWFS suite and the
1-Wire driver of the REX Control System, which is done by the following command:
Debian:
sudo apt-get install owserver ow-shell rex-owsdrvt

OpenWrt:
opkg install owserver owshell rex-owsdrvt

1.4.1 Running the 1Wire server

The owserver must be configured to use the 1-Wire bus master of your choice. Use sudo
nano /etc/owfs.conf command to edit the file.

E.g. for use with USB to 1-Wire adapter (e.g. DS9490R):

!server: server = localhost:4304

allow_other

server: port = localhost:4304

server: usb = all

timeout_volatile = 2

For I2C devices based on the DS2482-100 or DS2482-800 chip the /etc/owfs.conf

file should contain the following:

!server: server = localhost:4304

allow_other

server: port = localhost:4304

server: i2c=ALL:ALL

timeout_volatile = 2

It is also necessary to activate the I2C bus and enable the i2c-dev kernel module. If you
have used our installation scripts for your platform, everything is ready for you. If you
have not, you probably know what to and how to do it. In any case, just check that e.g.
/dev/i2c-1 is present.

Restart the owserver and list the detected 1-Wire devices by the owdir command.
The output should look like this:

3

/28.551DDF030000

/bus.1

/bus.0

/uncached

/settings

/system

/statistics

/structure

/simultaneous

/alarm

The first line is the 1-Wire device ID (the DS18B20 temperature sensor in this case).
Read the temperature by issuing the command:
owread /28.551DDF030000/temperature12

(change the ID to match your device).

4

Chapter 2

Including the driver in the project

The driver is included in the project as soon as the driver is added to the project main
file and the inputs and outputs are connected in the control algorithms.

2.1 Adding the OwsDrv driver

The project main file with the OwsDrv driver included is shown in Figure 2.1.
There are 2 blocks which must be added to the project to include the driver. First the
MODULE block is attached the the Modules output of the EXEC function block. It must be
renamed to OwsDrv.

The other block of type IODRV is named OWS and it is connected to the Drivers

output of the main EXEC block. The three most important parameters are:

module – Name of the module linked to the driver, in this case OwsDrv. The name is
CASE SENSITIVE!

classname – Class of the driver, in this case OwsDrv. The name is CASE SENSITIVE!

cfgname – Name of the driver configuration file (*.rio, REX Input/Output). It is a
simple text file which is automatically created when necessary. It can have arbitrary
name (here ow_cfg.rio). The configuration is further discussed in chapter 3.

The name of this block (OWS, see Fig. 2.1), is the prefix of all input and output signals
provided by this driver.

The above mentioned parameters of the IODRV function block are configured in Rex-
Draw program. The configuration dialog is shown also in Fig. 2.1.

2.2 Connecting the signals in the algorithm

The input and output signals of the driver must be interconnected with the individual
tasks (.mdl files). The individual tasks (QTASK or TASK blocks) are connected to the
QTask, Level0,. . . , Level3 outputs of the main EXEC block.

5

Figure 2.1: An example of project main file with the OwsDrv driver included

The inputs and outputs of the OwsDrv driver can be accessed as shown in Fig. 2.2.
The From block allowing the user to read one input signal has the Goto tag set to

OWS__temperature. The Goto block allowing the user to set one output signal would
have the Goto tag set to OWS__name. The blocks always have the OWS prefix right at the
beginning of the tag followed by two _ characters (underscore).

6

Figure 2.2: Temperature logging based on the OwsDrv driver

7

Chapter 3

Driver configuration

This chapter describes the configuration of individual input and output signals and their
symbolic naming. The signals are mapped to individual variables of the OWFS server.

3.1 Configuration dialog

The configuration dialog shown in Fig. 3.1 is part of the OwsDrv_H.dll file. It can be
activated from RexDraw by pressing the Configure button in the parameters dialog of
the IODRV block (see chapter 2).

Figure 3.1: Configuration dialog of the 1-Wire driver

8

The upper part of the dialog defines the connection to the owserver. The owserver

typically runs on the same machine as RexCore but it is not a rule.
The individual signals to read or write from the REX control algorithm are defined

in the lower part of the configuration dialog. Simply add the signals, use the device IDs
displayed by the owdir command.

Signals can be added or edited after the double click on the selected item in the
parametric dialog in Fig. 3.1 or after pressing the Add or Edit button in a small dialog
in Fig. 3.2.

Figure 3.2: Item configuration dialog of the 1-Wire driver

For an output signal (in the I/O column the output is selected), the Value is once
written to the output if it is not overwritten from the control algorithm.

The signal table in the driver configuration dialog is processed cyclically during the
run-time in the following way. Each output signal which has been changed since the last
write is written with the value. Similarly, all input signals are being cyclically read in
the same order. When a large number of inputs is configured the reading of the whole
table can take quite a long time. Therefore, the owserver program allows to indicate
signal changes as so called alarms in the /alarm directory, see section 3.2. This driver is
able to process alarms from REX version 2.5.

Moreover, if the Uncached option is checked then the given signal will be always
read directly from the connected integrated circuit (e.g. from the thermometer). If the
Uncached is not checked then the returned value will be read from the cache memory
which is typically updated each 15 seconds. Note: The more signals has chosen Uncached,

9

the slower the response of this driver.
To optimize the performance of this driver it is helpful to know how the driver

operates internally. The main loop activated each period of the driver always handles no
more than one request to the owserver program and after sending a request to owserver,
it does not wait on an immediate response (ie. If the response data are not available, it
tries to get them in the next loop run). After initializing the driver (when the real/time
executive is running) the main loop operates as follows:

• It check whether the currently processed request (from the previous call of this
loop) has been completed.

• If so, it starts to process alarms (for details see next section).

• If no alarm is processed, it tries to write a single output value from the control
algorithm.

• If no write is processed, it tries to read one input value to the control algorithm.

The above procedure shows that the highest importance (priority) has alarm process-
ing, then writing the output values from the algorithm, and the lowest reading signals.
In frequent occurrence of alarms (which is not normal) it could happen that writting and
reading requests are not served at all (this effect is also called starvation). Therefore, it
is possible to set the maximum number of consecutive served alarms in the driver con-
figuration in Fig. 3.1. After this number of served alarms, the first of the other pending
requests (writing or reading items) is processed.

3.2 Use of alarms of the owfs program

Work with alarms belongs among the advanced techniques and requires good knowledge
of owfs and the owserver. It is recommended to use alarms only when the 1-Wire driver
response is too slow.

Configuration of one alarm in the case of DS2408 circuit based 1-Wire device is shown
in Fig. 3.3. The path to the signal (Sensor/Actuator path) is entered without starting
directory /alarm. After selecting the Alarm, additional strings should be entered. The
configured string values are preprocessed and stored to working string variables for each
alarm (before start of the driver):

sPath – path to the device, here: /29.066418000000. For reading or writing values,
the /alarm directory can be inserted before this path, and the character / and the
value of some of the preprocessed strings (see next items) can be appended after
this path

sSensed – file with the value to be read, here: sensed.BYTE

sLatch – file with the sensed value change flag(s), here: latch.BYTE

sAlarmPor – file indicating the power-on reset of the device, here: por

10

Figure 3.3: Example of configuration dialog for an alarm

sSet – file, to which should be written the configuration of next alarm generation (first
part of the Set Alarm item to the character =), here: set_alarm

sSetVal – value, which should be written to the sSet file (second part of the Set Alarm

item from the character =), here: 133333333

sLatchRes – file, to which should be written the value indicating that the alarm has been
served (first part of the Reset Latch item to the character =), here: latch.BYTE

sLatchResVal – value, which should be written to the sLatchRes file (second part of
the Reset Latch item from the character =), here: 0

The OwsDrv uses a state machine with the following states for the alarm processing:

NOT_USED – The driver configuration does not contain any alarm.

INIT – The initial state of the state machine.

ALARM_DIR – Browsing the /alarm directory contents.

ALARM_PROCESS – Start of each alarm processing.

ALARM_POR_READ – Detecting whether the device did not perform the power-on reset
initialization by reading a file whose name is stored in the sAlarmPor string.

11

ALARM_POR_READ_WAIT – Waiting for the completion of the reading started in the
ALARM_POR_READ state.

ALARM_SET – Setting the alarm generated on the device after power-on reset. The string
value in sSetVal is written into the file whose name is specified by the sSet string.

ALARM_SET_WAIT – Waiting for the completion of the writing started in the ALARM_SET

state. After that, all outputs are checked. When an output whose path starts with
the sPath string is found, the initial value specified in the Init. Value item is
written to the corresponding file (see fig. 3.3).

ALARM_INIT_WRITE_WAIT – Waiting for the completion of each individual initial value
writing started in the previous state.

ALARM_POR_RESET – Clearing of the power-on reset initialization flag. The value 0 is
written into the file whose name is specified by the sAlarmPor string.

ALARM_POR_RESET_WAIT – Waiting for the completion of the power-on reset flag clearing.

ALARM_LATCH – Determining whether the device indicates the occurrence of an alarm.
In this state, the file whose name is specified by the sLatch string is read. If
the content is non-zero, or the list of items contains at least one non-zero, the
occurrence of alarm since the last reading is detected.

ALARM_LATCH_WAIT – Waiting for the completion of the reading started in the ALARM_LATCH
state.

ALARM_SENSED – Reading the signal after the alarm occurred. If the alarm occurrence
has been detected in the ALARM_LATCH state, reading of the file whose name is
specified by the sSensed string in the /alarm directory is started.

ALARM_SENSED_WAIT – Waiting for the completion of the reading started in the ALARM_SENSED
state.

ALARM_LATCH_RESET – Clearing of the alarm occurence flag. The string value in sLatchResVal

is written into the file whose name is specified by string sLatchRes in the /alarm

directory.

ALARM_LATCH_RESET_WAIT – Waiting for the completion of the alarm occurence flag
clearing started in the ALARM_LATCH_RESET state.

SENSED – Reading the signal, which could change before clearing the alarm occurence
flag in the ALARM_LATCH_RESET state. In this state, reading the contents of the file
whose name is specified by the sSensed string is started.

SENSED_WAIT – Waiting for the completion of the reading started in the SENSED state.

ALARM_BYPASS – State enabling to perform one write or read of another signal between
processing of two alarms.

12

Transitions between states follows the rules in table 3.1. The first column shows the
current state, the second column can contain one or more conditions for each current
state, and the third column contains the state into which the state-machine goes, if
the relevant condition of the second column is fulfilled. Conditions in column two are
evaluated from top to bottom for each current state.

3.3 Special signals

In some cases, it is useful/necessary to access the status or configuration variables of the
driver. The signals below marked with the R (W) letter are readable (writeable) signals,
i.e. they are inputs (outputs) of the control system.

The driver performs these special signals:
_DGNRESET W reset of the accumulated diagnostics information
_TRANSACTIONS R total number of transactions with owserver

_RECONNECTS R number of reconnections (after communication errors)
All global signals starts with the _ (underscore) character. In these cases the tripple

underscore will be used (e.g. OWS___DGNRESET) because of the __ (double underscore)
separator between the diver tag and the signal name.

Moreover, each signal can be suffixed with a special text which determines that a
special attribute of the signal will be used instead of the signal value. The special suffixes
are the following (all begins with _):
_Value RW alias for signal value
_DGNRESET W reset of the diagnostics information for the given signal
_TRANSACTIONS R number of transactions with owserver for the given signal
_ReadEnable RW enable to read the signal; equivalent: _RE
_WriteEnable RW enable to write the signal; equivalent: _WE
_WriteOneShot W one-shot write of the signal; equivalent: _WOS
_Alarm R alarm flag of the signal; after reading it is cleared
_PerFactor R driver period multiplier for the signal update
_PerCount R number of the driver periods from the last signal update
_PerMax R maximum number of the driver periods between two consec-

utive signal updates
_PendCount R current number of waiting cycles for returning the value from

owserver

_PendLast R last number of waiting cycles for returning the value from
owserver

_PendMax R maximum number of waiting cycles for returning the value
from owserver

_Period R update period (in seconds) of the signal
_Age R the time elapsed since the last update of the signal (signal

age)
_AgeMax R maximum signal age from the last reset of the diagnostics

information

13

State Transition Conditions New State

-1 NOT_USED At least one configured alarm found INIT

0 INIT Start of reading the /alarm directory ALARM_DIR

1 ALARM_DIR Reading of the /alarm directory completed ALARM_PROCESS

2 ALARM_PROCESS

If nMaxConsAlarms is consecutively read then ALARM_BYPASS

else ALARM_POR_READ

At the end of alarm cycle assign: iAlarmPos = -1. Then ALARM_BYPASS

3 ALARM_POR_READ

If sAlarmPor is not defined then next alarm ALARM_PROCESS

If sAlarmPor is empty then ALARM_LATCH

After succesful read of sAlarmPor ALARM_POR_READ_WAIT

4 ALARM_POR_READ_WAIT
If the variable por is not equal to zero ALARM_SET

If por is equal to zero ALARM_LATCH

5 ALARM_SET

If sSet or sSetVal is not defined then next alarm ALARM_PROCESS

If sSet or sSetVal is empty then ALARM_POR_RESET

Assign iAlarmInitPos = -1; After successful write ALARM_SET_WAIT

6 ALARM_SET_WAIT
Iterate iAlarmInitPos. For found write commands ALARM_INIT_WRITE_WAIT

At the end of the cycle: iAlarmInitPos = -1; then ALARM_POR_RESET

7 ALARM_INIT_WRITE_WAIT
If iAlarmInitPos < 0 then ALARM_POR_RESET

else ALARM_SET_WAIT

8 ALARM_POR_RESET

If sAlarmPor is not defined then next alarm ALARM_PROCESS

If sAlarmPor is empty then ALARM_LATCH

After successful write ALARM_POR_RESET_WAIT

9 ALARM_POR_RESET_WAIT After competion the request ALARM_LATCH

10 ALARM_LATCH
If sLatch is not defined or is empty then next alarm ALARM_PROCESS

After successful reading ALARM_LATCH_WAIT

11 ALARM_LATCH_WAIT
If the variable latch is not equal to zero then ALARM_SENSED

else next alarm ALARM_PROCESS

12 ALARM_SENSED

If sSensed is not defined then next alarm ALARM_PROCESS

If sSensed is empty then ALARM_LATCH_RESET

After successful reading ALARM_SENSED_WAIT

13 ALARM_SENSED_WAIT After competion the request ALARM_LATCH_RESET

14 ALARM_LATCH_RESET

If sLatchRes or sLatchResVal is not defined then ALARM_PROCESS

If sLatchRes or sLatchResVal is empty then SENSED

After successful write ALARM_LATCH_RESET_WAIT

15 ALARM_LATCH_RESET_WAIT After competion the request SENSED

16 SENSED
If sSensed is not defined or is empty then next alarm ALARM_PROCESS

After successful reading SENSED_WAIT

17 SENSED_WAIT After competion the request ALARM_PROCESS

18 ALARM_BYPASS
If iAlarmPos >= 0 then next alarm ALARM_PROCESS

Else continue from the beginning INIT

Table 3.1: Alarm processing state-machine

14

Chapter 4

Troubleshooting

In the case that the diagnostic tools of the REX Control System (e.g. RexView) report
unexpected or incorrect values of inputs or outputs, it is desirable to test the functionality
outside the REX Control System (command line tools, simple Python script, etc.). Also
double check the configuration – the most common problems include:

Hardware problem – incorrect wiring

Kernel modules for I2C or USB devices are not loaded

Incorrect device ID

Too long period of a task reading signals from OwsDrv (the system log contains regu-
larly the Socket Error). It is necessary to increase the owserver timeout by the
command line parameter --timeout_server=60 (timeout increased to 60 seconds)

In the case that the given input or output works with other software tools and does not
work in the REX Control System, report the problem to us, please. E-mail is preferred,
reach us at support@rexcontrols.com. Please include the following information in your
description to help us process your request as soon as possible:

• Identification of the REX Control System you are using. Simply export it to a file
using the RexView program (Target → Licence → Export).

• Short and accurate description of your problem.

• The configuration files of the REX Control System (.mdl files) reduced to the
simplest case which still demonstrates the problematic behavior.

15

mailto:support@rexcontrols.com

Bibliography

[1] Maxim Integrated. 1-Wire Application Notes. http://www.maximintegrated.com,
2013.

[2] Paul Alfille. OWFS 1-Wire Filesystem. http://www.owfs.org, 2013.

[3] REX Controls s.r.o.. Getting started with REX on Raspberry Pi, 2013.

Documentation reference number: 8269

16

	1 The OwsDrv driver and the REX Control System
	1.1 Introduction
	1.2 System requirements
	1.3 Installation of the driver on the host computer
	1.4 Installation of the driver on the target device
	1.4.1 Running the 1Wire server

	2 Including the driver in the project
	2.1 Adding the OwsDrv driver
	2.2 Connecting the signals in the algorithm

	3 Driver configuration
	3.1 Configuration dialog
	3.2 Use of alarms of the owfs program
	3.3 Special signals

	4 Troubleshooting
	 Bibliography

