
www.rexcontrols.com/rex

Function Blocks of the REX Control System
Reference manual

REX Controls s.r.o.

Version 2.50.4
2017-05-17

Plzeň (Pilsen), Czech Republic

www.rexcontrols.com/rex

2

Contents

1 Introduction 13
1.1 How to use this manual . 13
1.2 The function block description format . 15
1.3 Conventions for variables, blocks and subsystems naming 16
1.4 The signal quality corresponding with OPC 17

2 EXEC – Real-time executive configuration 19
ARC – The REX system archive . 20
EXEC – Real-time executive . 22
HMI – Human-Machine Interface Configuration 24
INFO – Description of Algorithm . 26
IODRV – The REX control system input/output driver 27
IOTASK – Driver-triggered task of the REX control system 29
LPBRK – Loop break . 30
MODULE – Extension module of the REX control system 31
PROJECT – Additional Project Settings . 32
QTASK – Quick task of the REX control system 33
SLEEP – Timing in Simulink . 34
SRTF – Set run-time flags . 35
OSCALL – Operating system calls . 37
TASK – Standard task of the REX control system 38
TIODRV – The REX control system input/output driver with tasks 40
WWW – Internal Web Server Content . 42

3 INOUT – Input and output blocks 43
Display – Numeric display of input values 44
From, INSTD – Signal connection or input 45
Goto, OUTSTD – Signal source or output . 47
GotoTagVisibility – Visibility of the signal source 49
Inport, Outport – Input and output port 50
SubSystem – Subsystem block . 52
INQUAD, INOCT, INHEXD – Multi-input blocks 53
OUTQUAD, OUTOCT, OUTHEXD – Multi-output blocks 54

3

4 CONTENTS

OUTRQUAD, OUTROCT, OUTRHEXD – Multi-output blocks with verification . . . 55
OUTRSTD – Output block with verification 57
QFC – Quality flags coding . 58
QFD – Quality flags decoding . 59
VIN – Validation of the input signal . 60
VOUT – Validation of the output signal . 61

4 MATH – Math blocks 63
ABS_ – Absolute value . 65
ADD – Addition of two signals . 66
ADDQUAD, ADDOCT, ADDHEXD – Multi-input addition 67
CNB – Boolean (logic) constant . 68
CNE – Enumeration constant . 69
CNI – Integer constant . 70
CNR – Real constant . 71
DIF_ – Difference . 72
DIV – Division of two signals . 73
EAS – Extended addition and subtraction 74
EMD – Extended multiplication and division 75
FNX – Evaluation of single-variable function 76
FNXY – Evaluation of two-variables function 78
GAIN – Multiplication by a constant . 80
GRADS – Gradient search optimization . 81
IADD – Integer addition . 83
ISUB – Integer subtraction . 85
IMUL – Integer multiplication . 87
IDIV – Integer division . 89
IMOD – Remainder after integer division 90
LIN – Linear interpolation . 91
MUL – Multiplication of two signals . 92
POL – Polynomial evaluation . 93
REC – Reciprocal value . 94
REL – Relational operator . 95
RTOI – Real to integer number conversion 96
SQR – Square value . 97
SQRT_ – Square root . 98
SUB – Subtraction of two signals . 99

5 ANALOG – Analog signal processing 101
ABSROT – Processing data from absolute position sensor 103
ASW – Switch with automatic selection of input 105
AVG – Moving average filter . 107
AVS – Motion control unit . 108
BPF – Band-pass filter . 109

CONTENTS 5

CMP – Comparator with hysteresis . 110
CNDR – Nonlinear conditioner . 111
DEL – Delay with initialization . 113
DELM – Time delay . 114
DER – Derivation, filtering and prediction from the last n+1 samples . . . 115
EVAR – Moving mean value and standard deviation 117
INTE – Controlled integrator . 118
KDER – Derivation and filtering of the input signal 120
LPF – Low-pass filter . 122
MINMAX – Running minimum and maximum 123
NSCL – Nonlinear scaling factor . 124
RDFT – Running discrete Fourier transform 125
RLIM – Rate limiter . 127
S1OF2 – One of two analog signals selector 128
SAI – Safety analog input . 131
SEL – Analog signal selector . 134
SELQUAD, SELOCT, SELHEXD – Analog signal selectors 136
SHIFTOCT – Data shift register . 138
SHLD – Sample and hold . 140
SINT – Simple integrator . 141
SPIKE – Spike filter . 142
SSW – Simple switch . 144
SWR – Selector with ramp . 145
VDEL – Variable time delay . 146
ZV4IS – Zero vibration input shaper . 147

6 GEN – Signal generators 151
ANLS – Controlled generator of piecewise linear function 152
BINS – Controlled binary sequence generator 154
BIS – Binary sequence generator . 156
MP – Manual pulse generator . 157
PRBS – Pseudo-random binary sequence generator 158
SG, SGI – Signal generators . 160

7 REG – Function blocks for control 163
ARLY – Advance relay . 165
FLCU – Fuzzy logic controller unit . 166
FRID – ∗ Frequency response identification 169
I3PM – Identification of a three parameter model 171
LC – Lead compensator . 173
LLC – Lead-lag compensator . 174
MCU – Manual control unit . 175
PIDAT – PID controller with relay autotuner 177
PIDE – PID controller with defined static error 180

6 CONTENTS

PIDGS – PID controller with gain scheduling 182
PIDMA – PID controller with moment autotuner 184
PIDU – PID controller unit . 190
PIDUI – PID controller unit with variable parameters 193
POUT – Pulse output . 195
PRGM – Setpoint programmer . 196
PSMPC – Pulse-step model predictive controller 198
PWM – Pulse width modulation . 202
RLY – Relay with hysteresis . 204
SAT – Saturation with variable limits . 205
SC2FA – State controller for 2nd order system with frequency autotuner . . 207
SCU – Step controller with position feedback 213
SCUV – Step controller unit with velocity input 216
SELU – Controller selector unit . 220
SMHCC – Sliding mode heating/cooling controller 222
SMHCCA – Sliding mode heating/cooling controller with autotuner 226
SWU – Switch unit . 233
TSE – Three-state element . 234

8 LOGIC – Logic control 235
AND_ – Logical product of two signals . 236
ANDQUAD, ANDOCT, ANDHEXD – Logical product of multiple signals 237
ATMT – Finite-state automaton . 238
BDOCT, BDHEXD – Bitwise demultiplexers 241
BITOP – Bitwise operation . 242
BMOCT, BMHEXD – Bitwise multiplexers . 243
COUNT – Controlled counter . 244
EATMT – Extended finite-state automaton 246
EDGE_ – Falling/rising edge detection in a binary signal 249
INTSM – Integer number bit shift and mask 250
ISSW – Simple switch for integer signals 251
INTSM – Integer number bit shift and mask 252
ITOI – Transformation of integer and binary numbers 253
NOT_ – Boolean complementation . 255
OR_ – Logical sum of two signals . 256
ORQUAD, OROCT, ORHEXD – Logical sum of multiple signals 257
RS – Reset-set flip-flop circuit . 258
SR – Set-reset flip-flop circuit . 259
TIMER_ – Multipurpose timer . 260

9 TIME – Blocks for handling time 263
DATE_ – Current date . 264
DATETIME – Get, set and convert time . 265
TIME – Current time . 268

CONTENTS 7

WSCH – Weekly schedule . 269

10 ARC – Data archiving 271
10.1 Functionality of the archiving subsystem 272
10.2 Generating alarms and events . 273

ALB, ALBI – Alarms for Boolean value . 273
ALN, ALNI – Alarms for numerical value . 275

10.3 Trends recording . 277
ACD – Archive compression using Delta criterion 277
TRND – Real-time trend recording . 279
TRNDV – Real-time trend recording with vector input 282
TRNDLF – ∗ Real-time trend recording (lock-free) 284
TRNDVLF – ∗ Real-time trend recording (for vector signals, lock-free) 286

10.4 Archive management . 287
AFLUSH – Forced archive flushing . 287

11 STRING – Blocks for string operations 289
CNS – String constant . 290
CONCAT – ∗ Concat string by pattern . 291
FIND – Find a Substring . 292
ITOS – Integer number to string conversion 293
LEN – String length . 294
MID – Substring Extraction . 295
PJROCT – ∗ Parse JSON string (real output) 296
PJSOCT – ∗ Parse JSON string (string output) 297
REGEXP – Regular expresion parser . 298
REPLACE – Replace substring . 299
RTOS – Real Number to String Conversion 300
SELSOCT – ∗ String selector . 301
STOR – String to real number conversion 303

12 PARAM – Blocks for parameter handling 305
GETPA – Block for remote array parameter acquirement 306
GETPR, GETPI, GETPB – Blocks for remote parameter acquirement 308
GETPS – ∗ Block for remote string parameter acquirement 310
PARA – Block with input-defined array parameter 311
PARR, PARI, PARB – Blocks with input-defined parameter 312
PARS – ∗ Block with input-defined string parameter 314
SETPA – Block for remote array parameter setting 315
SETPR, SETPI, SETPB – Blocks for remote parameter setting 317
SETPS – ∗ Block for remote string parameter setting 319
SGSLP – Set, get, save and load parameters 320
SILO – Save input value, load output value 324
SILOS – Save input string, load output string 325

8 CONTENTS

13 MODEL – Dynamic systems simulation 327
CDELSSM – Continuous state space model of a linear system with time delay328
CSSM – Continuous state space model of a linear system 331
DDELSSM – Discrete state space model of a linear system with time delay . 333
DSSM – Discrete state space model of a linear system 335
FMUCS – ∗ Import modelu FMU CS (pro Co-Simulation) 337
FMUINFO – ∗ Imformace o importovaném modelu FMU 340
FOPDT – First order plus dead-time model 341
MDL – Process model . 342
MDLI – Process model with input-defined parameters 343
MVD – Motorized valve drive . 344
SOPDT – Second order plus dead-time model 345

14 MATRIX – Blocks for matrix and vector operations 347
CNA – Array (vector/matrix) constant . 349
MB_DASUM – Sum of the absolute values . 350
MB_DAXPY – Performs y := a*x + y for vectors x,y 351
MB_DCOPY – Copies vector x to vector y . 353
MB_DDOT – Dot product of two vectors . 355
MB_DGEMM – Performs C := alpha*op(A)*op(B) + beta*C, where op(X) =
X or op(X) = X^T . 357
MB_DGEMV – Performs y := alpha*A*x + beta*y or y := alpha*A^T*x +
beta*y . 359
MB_DGER – Performs A := alpha*x*y^T + A 362
MB_DNRM2 – Euclidean norm of a vector . 364
MB_DROT – Plain rotation of a vector . 365
MB_DSCAL – Scales a vector by a constant 367
MB_DSWAP – Interchanges two vectors . 369
MB_DTRMM – Performs B := alpha*op(A)*B or B := alpha*B*op(A), where
op(X) = X or op(X) = X^T for triangular matrix A 371
MB_DTRMV – Performs x := A*x or x := A^T*x for triangular matrix A . . 373
MB_DTRSV – Solves one of the system of equations A*x = b or A^T*x =
b for triangular matrix A . 375
ML_DGEBAK – Backward transformation to ML_DGEBAL of left or right
eigenvectors . 377
ML_DGEBAL – Balancing of a general real matrix 379
ML_DGEBRD – Reduces a general real matrix to bidiagonal form by an or-
thogonal transformation . 381
ML_DGECON – Estimates the reciprocal of the condition number of a general
real matrix . 383
ML_DGEES – Computes the eigenvalues, the Schur form, and, optionally,
the matrix of Schur vectors . 386
ML_DGEEV – Computes the eigenvalues and, optionally, the left and/or right
eigenvectors . 388

CONTENTS 9

ML_DGEHRD – Reduces a real general matrix A to upper Hessenberg form . 390
ML_DGELQF – Computes an LQ factorization of a real M-by-N matrix A . . 392
ML_DGELSD – Computes the minimum-norm solution to a real linear least
squares problem . 394
ML_DGEQRF – Computes an QR factorization of a real M-by-N matrix A . . 396
ML_DGESDD – Computes the singular value decomposition (SVD) of a real
M-by-N matrix A . 398
ML_DTRSYL – Solves the real Sylvester matrix equation for quasi-triangular
matrices A and B . 400
MX_CTODPA – Discretizes continuous model given by (A,B) to (Ad,Bd)
using Pade approximations . 402
MX_DIM – Matrix/Vector dimensions . 404
MX_DSAGET – Set subarray of A into B . 405
MX_DSAREF – Set reference to subarray of A into B 407
MX_DSASET – Set A into subarray of B . 409
MX_DTRNSP – General matrix transposition: B := alpha*A^T 411
MX_DTRNSQ – Square matrix in-place transposition: A := alpha*A^T . . . 413
MX_FILL – Fill real matrix or vector . 415
MX_MAT – Matrix data storage block . 416
MX_RAND – Randomly generated matrix or vector 417
MX_REFCOPY – Copies input references of matrices A and B to their output
references . 419
MX_VEC – Vector data storage block . 420
MX_WRITE – Write a Matrix/Vector to the console/system log 421
RTOV – Vector multiplexer . 423
SWVMR – Vector/matrix/reference signal switch 424
VTOR – Vector demultiplexer . 425

15 SPEC – Special blocks 427
EPC – External program call . 428
HTTP – HTTP GET or POST request (obsolete) 431
HTTP2 – Block for generating HTTP GET or POST requests 433
SMTP – Send email message via SMTP . 435
RDC – Remote data connection . 437
REXLANG – User programmable block . 442

16 MC_SINGLE – Motion control - single axis blocks 459
RM_Axis – Motion control axis . 462
MC_AccelerationProfile, MCP_AccelerationProfile – Acceleration pro-
file . 468
MC_Halt, MCP_Halt – Stopping a movement (interruptible) 472
MC_HaltSuperimposed, MCP_HaltSuperimposed – Stopping a movement
(superimposed and interruptible) . 473
MC_Home, MCP_Home – Homing . 474

10 CONTENTS

MC_MoveAbsolute, MCP_MoveAbsolute – Move to position (absolute coor-
dinate) . 476
MC_MoveAdditive, MCP_MoveAdditive – Move to position (relative to pre-
vious motion) . 480
MC_MoveRelative, MCP_MoveRelative – Move to position (relative to ex-
ecution point) . 483
MC_MoveSuperimposed, MCP_MoveSuperimposed – Superimposed move . . 486
MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute – Move to
position (absolute coordinate) . 489
MC_MoveContinuousRelative, MCP_MoveContinuousRelative – Move to
position (relative to previous motion) . 492
MC_MoveVelocity, MCP_MoveVelocity – Move with constant velocity . . . 496
MC_PositionProfile, MCP_PositionProfile – Position profile 500
MC_Power – Axis activation (power on/off) 504
MC_ReadActualPosition – Read actual position 505
MC_ReadAxisError – Read axis error . 506
MC_ReadBoolParameter – Read axis parameter (bool) 507
MC_ReadParameter – Read axis parameter 508
MC_ReadStatus – Read axis status . 510
MC_Reset – Reset axis errors . 512
MC_SetOverride, MCP_SetOverride – Set override factors 513
MC_Stop, MCP_Stop – Stopping a movement 515
MC_TorqueControl, MCP_TorqueControl – Torque/force control 517
MC_VelocityProfile, MCP_VelocityProfile – Velocity profile 520
MC_WriteBoolParameter – Write axis parameter (bool) 524
MC_WriteParameter – Write axis parameter 525
RM_AxisOut – Axis output . 527
RM_AxisSpline – Commanded values interpolation 529
RM_Track – Tracking and inching . 531

17 MC_MULTI – Motion control - multi axis blocks 533
MC_CamIn, MCP_CamIn – Engage the cam 534
MC_CamOut – Disengage the cam . 538
MCP_CamTableSelect – Cam definition . 540
MC_CombineAxes, MCP_CombineAxes – Combine the motion of 2 axes into
a third axis . 542
MC_GearIn, MCP_GearIn – Engange the master/slave velocity ratio 545
MC_GearInPos, MCP_GearInPos – Engage the master/slave velocity ratio
in defined position . 548
MC_GearOut – Disengange the master/slave velocity ratio 553
MC_PhasingAbsolute, MCP_PhasingAbsolute – Phase shift in synchro-
nized motion (absolute coordinates) . 555
MC_PhasingRelative, MCP_PhasingRelative – Phase shift in synchro-
nized motion (relative coordinates) . 558

CONTENTS 11

18 MC_COORD – Motion control - coordinated movement blocks 561
RM_AxesGroup – Axes group for coordinated motion control 564
RM_Feed – ∗ MC Feeder ??? . 567
RM_Gcode – ∗ CNC motion control . 568
MC_AddAxisToGroup – Adds one axis to a group 570
MC_UngroupAllAxes – Removes all axes from the group 571
MC_GroupEnable – Changes the state of a group to GroupEnable 572
MC_GroupDisable – Changes the state of a group to GroupDisabled 573
MC_SetCartesianTransform – Sets Cartesian transformation 574
MC_ReadCartesianTransform – Reads the parameter of the cartesian trans-
formation . 576
MC_GroupSetPosition, MCP_GroupSetPosition – Sets the position of all
axes in a group . 577
MC_GroupReadActualPosition – Read actual position in the selected co-
ordinate system . 579
MC_GroupReadActualVelocity – Read actual velocity in the selected co-
ordinate system . 580
MC_GroupReadActualAcceleration – Read actual acceleration in the se-
lected coordinate system . 581
MC_GroupStop – Stopping a group movement 582
MC_GroupHalt – Stopping a group movement (interruptible) 585
MC_GroupInterrupt, MCP_GroupInterrupt – Read a group interrupt . . . 590
MC_GroupContinue – Continuation of interrupted movement 592
MC_GroupReadStatus – Read a group status 593
MC_GroupReadError – Read a group error 595
MC_GroupReset – Reset axes errors . 596
MC_MoveLinearAbsolute – Linear move to position (absolute coordinates) 597
MC_MoveLinearRelative – Linear move to position (relative to execution
point) . 601
MC_MoveCircularAbsolute – Circular move to position (absolute coordi-
nates) . 605
MC_MoveCircularRelative – Circular move to position (relative to exe-
cution point) . 609
MC_MoveDirectAbsolute – Direct move to position (absolute coordinates) 613
MC_MoveDirectRelative – Direct move to position (relative to execution
point) . 616
MC_MovePath – General spatial trajectory generation 619
MC_GroupSetOverride – Set group override factors 621

A Licensing options 623

B Licensing of individual function blocks 625

C Error codes of the REX Control System 635

12 CONTENTS

Bibliography 641

Index 643

Note: Only a partial documentation is available in blocks marked by ∗ .

Chapter 1

Introduction

The manual “REX system function blocks” is a reference manual for the REX control
system function block library RexLib. It includes description and detailed information
about all function blocks RexLib consists of.

1.1 How to use this manual

The extensive function block library RexLib, which is a standard part of the REX control
system, is divided into smaller sets of logically related blocks, the so-called categories
(sublibraries). A separate chapter is devoted to each category, introducing the general
properties of the whole category and its blocks followed by a detailed description of
individual function blocks.

The content of individual chapters of this manual is following:

1 Introduction
This introductory chapter familiarizing the readers with the content and ordering
of the manual. A convention used for individual function blocks description is
presented.

2 EXEC – Real-time executive configuration
Blocks used mainly for configuration of the structure, priorities and timing of in-
dividual objects linked to the real-time subsystem of the REX control system (the
RexCore program) are described in this chapter. These blocks are not used for sim-
ulation in Simulink except two special blocks LPBRK and SLEEP which are essential
for executing the simulation in Simulink environment.

3 INOUT – Input and output blocks
This sublibrary consists of the blocks used mainly for the REX control system.
These blocks provide the connection between the control tasks and input/output
drivers.

13

14 CHAPTER 1. INTRODUCTION

4 MATH – Mathematic blocks
The blocks for arithmetic operations and basic math functions. Similar blocks can
be found in native Simulink libraries, but only blocks from this library can be used
for applications whose target platform is the REX control system.

5 ANALOG – Analog signal processing
The integrator, derivator, time delay, moving average, various filters, comparators
and selectors can be found among the blocks for analog signal processing. The
starting unit block (AVS) is also very interesting.

9 GEN – Signal generators
This chapter deals with analog and logic signal generators.

7 REG – Function blocks for control
The control function blocks form the most extensive sublibrary of the RexLib li-
brary. Blocks ranging from simple dynamic compensators to several modifications
of PID (P, I, PI, PD a PID) controller and some advanced controllers are included.
The blocks for control schemes switching and conversion of output signals for var-
ious types of actuators can be found in this sublibrary. The involved controllers
include the PIDGS block, enabling online switching of parameter sets (the so-called
gain scheduling), the PIDMA block with built-in moment autotuner, the PIDAT block
with built in relay autotuner, the FLCU fuzzy controller or the PSMPC predictive con-
troller, etc.

8 LOGIC – Logic control
This chapter describes blocks for combinational and sequential logic control includ-
ing the simplest Boolean operations (not, and, or) and also more complex blocks
like the sequential logic automat ATMT implementing the SFC standard (Sequential
Function Charts, formerly Grafcet).

10 ARC – Data archiving
This sublibrary contains blocks for alarms generation and blocks for storing trend
data directly on the target device. No such blocks can be found in the Simulink
system.

12 PARAM – Parameter handling
This sublibrary contains blocks for parameter handling, namely saving, loading
and remote manipulation with parameters.

13 MODEL – Dynamic systems modeling
The REX Control System can also be used for creating real-time mathematical
models of dynamic systems. The function blocks of this sublibrary were developed
for such cases.

14 MATRIX – Working with matrix and vector data
Function blocks for handling vector and matrix data in the REX Control System
are includeed in this sublibrary.

1.2. THE FUNCTION BLOCK DESCRIPTION FORMAT 15

16 MC_SINGLE – Single-axis motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for single axis motion control.

17 MC_MULTI – Multi-axes motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for motion control in multiple axes.

18 MC_COORD – Coordinated motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for coordinated motion control.

15 SPEC – Special blocks
The most interesting blocks of this sublibrary are the REXLANG and RDC blocks. It is
possible to compile and interpret user algorithms using the REXLANG block, whose
programming language is very similar to the C language (the syntax of the REXLANG
commands is mostly the same as in the C language). The RDC block can be used for
real-time communication between two Simulinks (even on two different networked
computers), two REX targets or between the Simulink and the REX system. The
RDC block can also provide data for the Matlab OPC server.

The individual chapters of this reference guide are not much interconnected, which means
they can be read in almost any order or even only the necessary information for specific
block can be read for understanding the function of that block. The electronic version
of this manual (in the .pdf format) is well-suited for such case as it is equipped with
hypertext bookmarks and contents, which makes the look-up of individual blocks very
easy.

Despite of that it is recommended to read the following subchapter, which describes
the conventions used for description of individual blocks in the rest of this manual.

1.2 The function block description format

The description of each function block consists of several sections (in the following order):

Block Symbol – displays the graphical symbol of the block

Function Description – brief description of the block function, omitting too detailed
information.

Inputs – detailed description of all inputs of the block

Outputs – detailed description of all outputs of the block

Parameters – detailed description of all parameters of the block

Example – a simple example of the use of the block in the context of other blocks and
optional graph with input and output signals for better understanding of the block
function.

16 CHAPTER 1. INTRODUCTION

If the block function is obvious, the section Example is omitted. In case of block with no
input or no output the corresponding section is omitted as well.

The inputs, outputs and parameters description has a tabular form:

<name> [nam] Detailed description of the input (output, parameter) <name>.
Mathematical symbol nam on the right side of the first column is used
in the equations in the Function Description section. It is listed only
if it differs from the name more than typographically. If the variable
value is limited to only enumerated values, the meaning of these values
is explained in this column. [�<def>] [↓<min>] [↑<max>]

<type>

The meaning of the three columns is quite obvious. The third column contains the item
<type>. The REX control system supports the types listed in table 1.1. But the most
frequently used types are bool for Boolean variables, long for integer variables and
double for real variables (in floating point arithmetics).

Each described variable (input, output or parameter) has a default value <def> in
the REX control system, which is preceded by the � symbol. Also it has upper and lower
limits, preceded by the symbols ↓ and ↑ respectively. All these three values are optional
(marked by []). If the value �<def> is not listed in the second column, it is equal to
zero. If the values of ↓<min> and/or ↑<max> are missing, the limits are given by the the
minimum and/or maximum of the corresponding type (see table 1.1).

Type Meaning Minimum Maximum
bool Boolean value 0 or 1 0 1

byte 8 bit integer number without the sign 0 255

short 16 bit integer number with the sign -32768 32767

long 32 bit integer number with the sign -2147483648 2147483647

word 16 bit integer number without the sign 0 65535

dword 32 bit integer number without the sign 0 4294967295

float 32 bit real number in floating point arithmetics < -3.4E+38 >3.4E+38

double 64 bit real number in floating point arithmetics < -1.7E+308 >1.7E+308

string character string

Table 1.1: Types of variables in the REX control system.

1.3 Conventions for variables, blocks and subsystems nam-
ing

Several conventions are used to simplify the use of the REX control system. All used
variable types were defined in the preceding chapter. The term variable refers to function
block inputs, outputs and parameters in this chapter. The majority of the blocks uses
only the following three types:

bool – for two-state logic variables, e.g. on/off, yes/no or true/false. The logic one (yes,

1.4. THE SIGNAL QUALITY CORRESPONDING WITH OPC 17

true, on) is referred to as on in this manual. Similarly the logic zero (no, false,
off) is represented by off. Nevertheless, some tools may display these values as on
for 1 and off for 0 for Matlab-Simulink compatibility reasons. The names of logic
variables consist of uppercase letters, e.g. RUN, YCN, R1, UP, etc.

long – for integer values, e.g. set of parameters ID, length of trend buffer, type of
generated signal, error code, counter output, etc. The names of integer variables
use usually lowercase letters and the initial character (always lowercase) is in most
cases {i, k, l, m, n, or o}, e.g. ips, l, isig, iE, etc. But several exceptions to this
rule exist, e.g. cnt in the COUNT block, btype, ptype1, pfac and afac in the TRND

block, etc.

double – for floating point values (real numbers), e.g. gain, saturation limits, results of
the majority of math functions, PID controller parameters, time interval lengths
in seconds, etc. The names of floating point variables use only lowercase letters,
e.g. k, hilim, y, ti, tt.

The function block names in the REX control system use uppercase letters, numbers
and the ’_’ (underscore) character. It is recommended to append a lowercase user-defined
string to the standard block name when creating user instances of function blocks.

It is explicitly not recommended to use diacritic and special characters like spaces,
CR (end of line), punctuation, operators, etc. in the user-defined names. The use of such
characters limits the transferability to various platforms and it can lead to incompre-
hension. The names are checked by the RexComp compiler which generates warnings if
inappropriate characters are found.

1.4 The signal quality corresponding with OPC

Every signal (input, output, parameter) in the REX control system has the so-called
quality flags in addition to its own value of corresponding type (table 1.1). The quality
flags in the REX control system correspond with the OPC (OLE for Process Control)
specification [1]. They can be represented by one byte, whose structure is explained in
the table 1.2.

Bit number 7 6 5 4 3 2 1 0
Bit weight 128 64 32 16 8 4 2 1
Bit field Quality Substatus Limits

Q Q S S S S L L
BAD 0 0 S S S S L L
UNCERTAIN 0 1 S S S S L L
not used in OPC 1 0 S S S S L L
GOOD 1 1 S S S S L L

Table 1.2: The quality flags structure

18 CHAPTER 1. INTRODUCTION

The basic quality type is determined by the QQ flags in the two most important
bits. Based on these the quality is distinguished between GOOD, UNCERTAIN and BAD. The
four SSSS bits provide more detailed information about the signal. They have different
meaning for each basic quality. The two least significant bits LL inform whether the
value exceeded its limits or if it is constant. Additional details and the meaning of all
bits can be found in [1], chapter 6.8.

Chapter 2

EXEC – Real-time executive
configuration

Contents
ARC – The REX system archive . 20
EXEC – Real-time executive . 22
HMI – Human-Machine Interface Configuration 24
INFO – Description of Algorithm . 26
IODRV – The REX control system input/output driver 27
IOTASK – Driver-triggered task of the REX control system 29
LPBRK – Loop break . 30
MODULE – Extension module of the REX control system 31
PROJECT – Additional Project Settings 32
QTASK – Quick task of the REX control system 33
SLEEP – Timing in Simulink . 34
SRTF – Set run-time flags . 35
OSCALL – Operating system calls . 37
TASK – Standard task of the REX control system 38
TIODRV – The REX control system input/output driver with tasks 40
WWW – Internal Web Server Content 42

19

20 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

ARC – The REX system archive

Block Symbol Licence: STANDARD

prev next

ARC

Function Description
The ARC block is intended for archives configuration in the REX control system. The
archives can be used for continuous recording of alarms, events and history trends directly
on the target platform. The output Archives of the EXEC block must be connected to
the prev input of the first archive. The following archives can be added by connecting
the input prev with the preceding archive’s output next. Only one archive block can
be connected to each next output, the output of the last archive remains unconnected.
The resulting archives sequence determines the order of allocation and initialization of
individual archives in the REX control system and also the index of the archive, which
is used in the arc parameter of the archiving blocks (see chapter 10). The archives are
numbered from 1 and the maximum number of archives is limited to 15 (archive no. 0 is
the internal system log).

The atype parameter determines the type of archive from the data-available-after-
restarting point of view. The admissible types depend on the target platform properties,
which can be inspected in the Target tab in the RexView program after successful con-
necting to the target device.

Archive consists of sequenced variable-length items (memory and disk space opti-
mization) with a timestamp. Therefore the other parameters are the total archive size in
bytes asize and maximum number of timestamps nmarks for speeding-up the sequential
seeking in the archive.

Input
prev Input for connecting with the next output of the preceding archive

or with the Archives output of the EXEC block in the case of the first
archive

long

Output
next Output for creating sequences of archives by connecting to the prev

input of the following archive
long

21

Parameters
atype Archive type �1 long

1 archive is allocated in the RAM memory (data is
irreversibly lost after restarting the target device)

2 archive is allocated in backed-up memory, e.g. CMOS
(data remains available after restarting the target device)

3 archive is allocated on a drive (data remains available in
the file after restarting)

asize Size of the archive in bytes ↓256 �102400 long

nmarks Number of time stamps for speeding-up sequential seeking in the
archive ↓2 �720

long

ldaymax Maximum size of archive per day [bytes]
↓1000 ↑2147480000 �1048576

large

period Period of writing data to disk [s] �60.0 double

22 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

EXEC – Real-time executive

Block Symbol Licence: STANDARD

Modules

Drivers

Archives

QTask

Level0

Level1

Level2

Level3

EXEC

Function Description
The EXEC block is a cornerstone of the so-called project main file in the .mdl format,
which configures individual subsystems of the REX control system. No similar block can
be found in the Matlab-Simulink system. The EXEC block and all connected configuration
blocks do not implement any mathematic algorithm. Such configuration structure is used
by the RexComp compiler during building of the overall REX control system application.

The REX control system configuration consists of modules (Modules), input/output
drivers (Drivers), archive subsystem (Archives) and real-time subsystem, which in-
cludes quick computation tasks (see the QTASK function block description for details)
and four priority levels (Level0 to Level3) for inserting computation tasks (see the
TASK function block description for details).

The base (shortest) period of the application is determined by the tick parame-
ter. This value is checked by the RexComp compiler as its limits vary by selected target
platform. Generally speaking, the lower period is used, the higher computational require-
ments of the REX Control System runtime core (RexCore) are.

The periods of individual computation levels (Level0 to Level3) are determined by
multiplying the base period tick by the parameters ntick0 to ntick3. Parameters pri0
to pri3 are the logical priorities of corresponding computation levels in the REX control

23

system. The REX control system uses 32 logical priorities, which are internally mapped
to the target platform operating system dependent priorities. The highest logical priority
of the REX control system is 0, the value 31 means the lowest. Should two tasks with
different priorities run at the same time, the lower priority (higher value) task would be
interrupted by the higher priority (lower value) task.

The default priorities pri0 to pri3 reflect the commonly accepted idea that the
"fast" tasks (short sampling period) should have higher priority than the "slow" ones
(the so-called Rate monotonic scheduling). This means that the default priorities need
not to be changed in most cases. Impetuous changes can lead to unpredictable effects!

Outputs
Modules Output for connecting the REX control system expansion modules, see

the MODULE function block description for details
long

Drivers Output for connecting the REX control system input/output drivers,
see the IODRV and TIODRV function block descriptions for details

long

Archives Output for archives configuration, see the ARC block long

QTask Output for connecting quick tasks with the highest priority and the
shortest period, see the QTASK block

long

Level0 Computation level for inserting tasks (see the TASK block) with high
priority pri0 and short period determined by the ntick0 parameter

long

Level1 Computation level for inserting tasks with medium priority pri1 and
medium-length period determined by the ntick1 parameter

long

Level2 Computation level for inserting tasks with low priority pri2 and long
period determined by the ntick2 parameter

long

Level3 Computation level for inserting tasks with the lowest priority pri3

and the longest period determined by the ntick3 parameter
long

Parameters
target Target device �PC - Windows stringGeneric target device

tick The base period (tick) of the REX control system core and also the
quick task (QTASK) period (in seconds) �0.05

double

ntick0 The multiplication tick*ntick0 determines the period of tasks
connected to Level0 ↓1 �10

long

ntick1 The multiplication tick*ntick1 determines the period of tasks
connected to Level1 ↓ntick0+1 �50

long

ntick2 The multiplication tick*ntick2 determines the period of tasks
connected to Level2 ↓ntick1+1 �100

long

ntick3 The multiplication tick*ntick3 determines the period of tasks
connected to Level3 ↓ntick2+1 �1200

long

pri0 Priority of all Level0 tasks ↓3 ↑31 �5 long

pri1 Priority of all Level1 tasks ↓pri0+1 ↑31 �9 long

pri2 Priority of all Level2 tasks ↓pri1+1 ↑31 �13 long

pri3 Priority of all Level3 tasks ↓pri2+1 ↑31 �18 long

24 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

HMI – Human-Machine Interface Configuration

Block Symbol Licence: STANDARD

HMI

Function Description
The HMI block is a so-called "pseudo-block" which stores additional settings and param-
eters related to the Human-Machine Interface (HMI) and the contents of the internal
web server. The only file where the block can be placed is the main project file with a
single EXEC block.

The REX Control System currently provides three straightforward methods of how
to create Human-Machine Interface:

• WebWatch is an auto-generated HMI from the RexDraw development tool during
project compilation. It has similar look, attributes and functions as the online
mode of the RexDraw development tool. The main difference is that WebWatch
is stored on the target device, is available from the integrated web server and may
be viewed with any modern web browser or any application that is compatible
with HTML, SVG and JavaScript. The WebWatch is a perfect tool for instant
creation of HMI that is suitable for system developers or integrators. It provides a
graphical interaction with almost all signals in the control algorithm.

• WebBuDi, which is an acronym for Web Buttons and Displays, is a simple
JavaScript file with several declarative blocks that describe data points which the
HMI is connected to and assemble a table in which all the data is presented. It
provides a textual interaction with selected signals and is suitable for system de-
velopers and integrators or may serve as a fall-back mode HMI for non-standard
situations.

• RexHMI is a standard SVG file that is edited with the RexHMI Designer with the
RexHMI extensions. The RexHMI Designer is a great tool for creating graphical
HMI that is suitable for operators and other end users.

The IncludeHMI parameter includes or excludes the HMI files from the final binary
form of the project. The HmiDir specifies a path to a directory where the final HMI is
located and from where it is inserted into the binary file during project compilation.
The path may be absolute or relative to the project. The GenerateWebWatch specifies
whether a WebWatch HMI should be generated into HmiDir during compilation. The
GenerateRexHMI specifies whether a RexHMI and WebBuDi should be generated into
HmiDir during compilation.

25

The logic of generating and including HMI during project compilation is as follows:

1. Delete all contents from HmiDir when GenerateWebWatch or GenerateRexHMI is
specified.

2. Generate RexHMI and WebBuDi from SourceDir into HmiDir if GenerateRexHMI
is enabled. All WebBuDi source files should be named in a *.hmi.js format and
all RexHMI source files should be named in a *.hmi.svg format. The generated
files are then named *.html.

3. Copy all contents from SourceDir except WebBuDi or RexHMI source files into
HmiDir if IncludeHMI is enabled.

4. Insert HMI from HmiDir into binary configuration if IncludeHMI is enabled.

The block does not have any inputs or outputs. The HMI block itself does not become
a part of the final binary configuration, only the files it points to do. Be careful when
inserting big files or directories as the integrated web server is not designed for mas-
sive data transfers. It is possible to shrink the data by enabling gzip compression. The
compression also reduces amount of data transferred to the client, but decompression
must be performed by the server when a client does not support gzip compression, which
brings additional load on the target device.

For a proper operation of the HMI block the compilation must be launched from the
RexDraw development tool and the RexHMI Designer must be installed.

Parameters
IncludeHMI Include HMI files in the project �on bool

HmiDir Output folder for HMI files �hmi string

SourceDir Source directory �hmisrc string

GenerateWebWatch Generate WebWatch HMI files �on bool

GenerateRexHMI Generate HMI from SVG and JS files �on bool

RedirectToHMI Web server will automatically redirect to HMI webpage if enabled
otherwise it will serve a standard home page as a starting page.

�on

bool

Compression Enables data compression in gzip format. bool

26 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

INFO – Description of Algorithm

Block Symbol Licence: STANDARD

INFO

Function Description
The INFO block is a so-called "pseudo-block" which stores textual information about a
real-time executive. The only file where the block can be placed is a main project file
with a single EXEC block an so it belongs to the EXEC category. The block does not have
any inputs or outputs. The information specified with this block becomes a part of the
final configuration, is stored on the target device and may be seen on different diagnostics
screens but does not have any impact on execution of the control algorithm or target’s
behavior.

Parameters
Title Project title string

Author Project author string

Description Brief description of the project string

Customer Information about a customer string

27

IODRV – The REX control system input/output driver

Block Symbol Licence: STANDARD

prev next

IODRV

Function Description
The input/output drivers of the REX control system are implemented as extension mod-
ules (see the MODULE block). A module can contain several drivers, which are added to
the REX control system configuration by using the IODRV blocks. The prev input of the
block must be connected with the Drivers output of the EXEC block or with the next

output of a IODRV block which is already included in the configuration. There can be
only one driver connected to the next output of the IODRV block. The next output of
the last driver in the configuration remains unconnected. This means that the drivers
create a unidirectional chain which defines the order of initialization and execution of
the individual drivers.

Each driver of the REX control system is identified by its name, which is defined by
the classname parameter (beware, the name is case-sensitive!). If the name of the driver
differs from the name of the module containing the given driver, the module name must
be specified by the module parameter, it is left blank otherwise. Details about these two
parameters can be found in the documentation of the corresponding REX control system
driver.

The majority of drivers stores its own configuration data in files with .rio extension
(REX Input/Output), whose name is specified by the cfgname parameter. The .rio files
are created in the same directory where the project main file is located (.mdl file with
the EXEC block). Driver is configured (e.g. names of the input/output signals, connection
to physical inputs/outputs, parameters of communication with the input/output device,
etc.) in an embedded editor provided by the driver itself. The editor is opened when the
Configure button is pressed in the parameter dialog of the IODRV block in the RexDraw
program of the REX control system. In Matlab/Simulink the editor is opened upon ticking
the "Tick this checkbox to call IOdrv EDIT dialog" checkbox.

The remaining parameters are useful only when the driver implements its own com-
putational task (see the corresponding driver documentation). The factor parameter
defines the driver’s task execution period by multiplying the EXEC block’s tick param-
eter factor times (factor*tick). The stack parameter defines the stack size in bytes.
It is recommended to keep the default setting unless stated otherwise in the driver doc-
umentation. The last parameter pri defines the logical priority of the driver’s task.
Inappropriate priority can influence the overall performance of the control system criti-
cally so it is highly recommended to check the driver documentation and the load of the

28 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

control system (drivers, levels and tasks) in the RexView diagnostic program.

Input
prev Input for connecting the driver with the Drivers output of the EXEC

block or with the next output of the preceding driver
long

Output
next Output for connecting to the prev input of the succeeding driver long

Parameters
module Name of the module, which includes the input/output driver

(mandatory only if module name differs from classname)
string

classname I/O driver class name; case sensitive! �DrvClass string

cfgname Name of the driver configuration file �iodrv.rio string

factor Multiple of the EXEC block’s tick parameter defining the driver’s task
execution period ↓1 �10

long

stack Stack size of the driver’s task in bytes ↓1024 �10240 long

pri Logical priority of the driver’s task ↓1 ↑31 �3 long

timer Driver is a source of time bool

29

IOTASK – Driver-triggered task of the REX control system

Block Symbol Licence: STANDARD

prev next

IOTASK

Function Description
Standard tasks of the REX control system are integrated into the configuration using
the TASK or QTASK blocks. Such tasks are executed by the system timer, whose tick is
configured by the EXEC block.

But the system timer can be unsuitable in some cases, e.g. when the shortest execution
period is too long or when the task should be executed by an external event (input signal
interrupt) etc. In such a case the IOTASK can be executed directly by the I/O driver
configured by the TIODRV block. The user manual of the given driver provides more
details about the possibility and conditions of using the above mentioned approach.

Input
prev Input for connecting the first task to the Tasks output of the TIODRV

block or for connecting to the previous task’s next output
long

Output
next Output for sequencing the tasks by connecting to the prev input of

the following task
long

Parameters
factor Execution factor which can be used to determine the task execution

period, see the user guide of the corresponding I/O driver �1
long

stack Stack size [bytes] �10240 long

filename Name of the file with the .mdl extension which contains the task
algorithm; in the case filename is not specified, the filename is given
by the name of the IOTASK block in the project main file (the .mdl

extension is attached automatically)

string

30 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

LPBRK – Loop break

Block Symbol Licence: STANDARD

Function Description
The LPBRK block is an auxiliary block often used in the control schemes consisting of the
REX control system function blocks. The block is usually placed in all feedback loops in
the scheme. Its behavior differs in the REX control system and the Simulink system.

The LPBRK block creates a one-sample delay in the Simulink system. If there exists
a feedback loop without the LPBRK block, the Simulink system detects an algebraic loop
and issues a warning (Matlab version 6.1 and above). The simulation fails after some
time.

The RexComp compiler omits the LPBRK block, the only effect of this block is the
breaking of the feedback loop at the block’s position. If there exists a loop without
the LPBRK block, the RexComp compiler issues a warning and breaks the loop at an
automatically determined position. It is recommended to use the LPBRK block in all
loops to achieve the maximum compatibility between the REX control system and the
Simulink system.

Input
u Input signal double

Output
y Output signal double

31

MODULE – Extension module of the REX control system

Block Symbol Licence: STANDARD

prev next

MODULE

Function Description
The REX control system has an open architecture thus its functionality can be extended.
Such extension is provided by modules. Each module is identified by its name placed
below the block symbol. The individual modules are added to the REX control system
configuration by connecting the prev input with the Modules output of the EXEC block or
with the next output of a MODULE which is already included in the configuration. There
can be only one module connected to the next output of the MODULE block. The next

output of the last module in the configuration remains unconnected. This means that
the modules create a unidirectional chain which defines the order of initialization and
execution of the individual modules.

Each module exists in two versions: one for the development platform (Host) and
one for the target platform (Target). The modules are implemented as DLL libraries in
Windows and Windows CE operating systems. The naming <modname>_H.dll (for devel-
opment platform) and <modname>_T.dll (for target platform) is used, where <modname>

is the module name.

Input
prev Input for connecting the module with the Modules output of the EXEC

block or with the next output of the preceding module
long

Output
next Output for connecting to the prev input of the succeeding module long

32 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

PROJECT – Additional Project Settings

Block Symbol Licence: STANDARD

PROJECT

Function Description
The PROJECT block is a so-called "pseudo-block" which stores additional settings and
parameters related to a project and a real-time executive. The only file where the block
can be placed is a main project file with a single EXEC block an so it belongs to the EXEC

category.
The block does not have any inputs or outputs. The block does not become a part

of a final binary configuration.

Parameters
CompileParams Command-line options which are passed to the RexComp during

project compilation.
string

TargetURL URL address of a target on which the configuration should be run.
The address is inserted into all connection dialogs automatically.

string

33

QTASK – Quick task of the REX control system

Block Symbol Licence: STANDARD

prev

QTASK

Function Description
The QTASK block is used for including the so-called quick task with high priority into the
executive of the REX control system. This task is used where the fastest processing of
the input signals is necessary, e.g. digital filtering of input signals corrupted with noise or
immediate processing of switches connected via digital inputs. The quick task is added
into the configuration by connecting the prev input with the EXEC block’s QTask output.
The quick task is initialized before the initialization of the Level0 computation level (see
the TASK block).

There can be only one QTASK block in the REX control system. It runs with the logical
priority no. 2. The algorithm of the quick task is configured the same way as the standard
TASK, it is a separate .mdl file.

The execution period of the task is given by a multiple of the factor parameter and
the tick of the EXEC block. The task is executed with the shortest period of tick seconds
for factor=1. In that case the system load is the highest. Under all circumstances the
QTASK must be executed within tick seconds, otherwise a real-time executive fatal error
occurs and no other tasks are executed. Therefore the QTASK block must be used with
consideration. The execution time of the block is displayed in the RexView diagnostic
program.

Input
prev Input for connecting the task with the QTask output of the EXEC block long

Parameters
factor Multiple of the EXEC block’s tick parameter defining the quick task

execution period �1
long

stack Stack size [bytes] �10240 long

filename Name of the file with the .mdl extension which contains the quick
task algorithm; in the case filename is not specified, the filename is
given by the name of the QTASK block in the project main file (the
.mdl extension is attached automatically)

string

34 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

SLEEP – Timing in Simulink

Block Symbol Licence: STANDARD

SLEEP

Function Description
The Matlab/Simulink system works natively in simulation time, which can run faster or
slower than real time, depending on the complexity of the algorithm and the computing
power available. Therefore the SLEEP block must be used when accurate timing and
execution of the algorithm in the Matlab/Simulink system is required. In the REX control
system, timing and execution is provided by system resources (see the EXEC block) and
the SLEEP block is ignored.

In order to perform real-time simulation of the algorithm, the SLEEP block must be
included. It guarantees that the algorithm is executed with the period given by the ts

parameter unless the execution time is longer than the requested period.
The SLEEP block is implemented for Matlab/Simulink running in Microsoft Win-

dows operating system. It is recommended to use periods of 100 ms and above. For the
proper functionality the ’Solver type’ must be set to fixed-step and discrete (no

continuous states) in the ’Solver’ tab of the ’Simulation parameters’ dialog. Further
the Fixed step size parameter must be equal to the ts parameter of the SLEEP block.
There should be at most one SLEEP block in the whole simulation scheme (including all
subsystems).

Parameter
ts Simulation scheme execution period (in seconds) �0.1 double

35

SRTF – Set run-time flags

Block Symbol Licence: ADVANCED

EXDIS
EXOSH
DGEN
DGRES

E

iE

SRTF

Function Description
The SRTF block (Set Run-Time Flags) can be used to influence the execution of tasks ,
subsystems (sequences) and blocks of the REX control system. This block is not meant
for use in Matlab-Simulink. When describing this block, the term object refers to a REX
control system object running in real-time, i.e. input/output driver, one of the tasks,
subsystem or a simple function block of the REX control system.

All the operations described below affect the object, whose full path is given by
the bname parameter. Should the parameter be left blank (empty string), the operation
applies to the nearest owner of the SRTF object, i.e. the subsystem in which the block is
directly included or the task containing the block.

The run-time flags allow the following operations:

• Disable execution of the object by setting the EXDIS input to on. The execution
can be enabled again by using the input signal EXDIS = off. The EXDIS input sets
the same run-time flag as the Halt/Run button in the upper right corner of the
Workspace tab in the RexView diagnostic program.

• One-shot execution of the object. If the object execution is disabled by the
EXDIS = on input or by the RexView program, it is possible to trigger one-shot
execution by EXOSH = on.

• Enable diagnostics for the given object by DGEN = on. The result is equivalent to
ticking the Enable checkbox in the diagnostic pane of the corresponding tab (I/O
Driver, Level, Quick Task, Task, I/O Task, Sequence) in the RexView program.

• Reset diagnostic data of the given object by DGRES = on. The same flag can
be set by the Reset button in the diagnostic pane of the corresponding tab in the
RexView program. The flag is automatically set back to 0 when the data reset is
performed.

The following table shows the flags available for various objects in the REX control
system.

36 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

Object type EXDIS EXOSH DGEN DGRES

I/O Driver
√ √ √ √

Level
√

×
√ √

Task
√ √ √ √

Quick Task
√ √ √ √

I/O Task
√ √ √ √

Sequence, subsystem
√

×
√ √

Block
√

× × ×

Inputs
EXDIS Disable execution bool

EXOSH One-shot execution bool

DGEN Enable diagnostics bool

DGRES Reset diagnostic data bool

DLOG Enable more verbose logging bool

Outputs
E Error flag bool

off . . . No error
on An error occurred

iE Error code (for E = on) long

0 No error
1 The object specified by the bname parameter was not

found
2 REX control system internal error (invalid pointers)
3 Flag could not be set (timeout)

Parameter
bname Full path to the block/object. Case sensitive. Individual layers are

separated by dots, the object names excluding tasks (TASK, QTASK)
start with the following special characters:

string

ˆ Computational level, e.g. ˆ0 for Level0
& Input/Output Driver, e.g. &WcnDrv

Name of the task triggered by input/output driver (IOTASK) has the
form &<driver_name>.<task_name>.

37

OSCALL – Operating system calls

Block Symbol Licence: STANDARD

TRG E
iE

OSCALL

Function Description
The OSCALL block is intended for executing operating system functions from within the
REX Control System. The chosen action is performed upon a rising edge (off→on) at
the TRG input. However, not all actions are supported on individual platforms. The result
of the operation and the possible error code are displayed by the E and iE outputs.

Note that there is also the EPC block available, which allows execution of external
programs.

Input
TRG Trigger of the selected action bool

Outputs
E Error flag bool

iE Error code long

i REX general error

Parameter
action System function to perform �1 long

1 Reboot system
2 System shutdown
3 System halt
4 Flush disc caches
5 Lock system partition
6 Unlock system partition
7 Disable internal webserver
8 Enable internal webserver

38 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

TASK – Standard task of the REX control system

Block Symbol Licence: STANDARD

prev next

TASK

Function Description
The overall control algorithm of the REX control system consists of individual tasks.
These are included by using the TASK block. There can be one or more tasks in the control
algorithm. The REX control system contains four main computational levels represented
by the Level0 to Level3 outputs of the EXEC block. The individual tasks are added to
the given computational level <i> by connecting the prev input with the corresponding
Level<i> output or with the next output of a TASK, which is already included in the given
level <i>. There can be only one task connected to the next output of the TASK block.
The next output of the last task in the given level remains unconnected. This means that
the tasks in one level create a unidirectional chain which defines the order of initialization
and execution of the individual tasks of the given level in the REX control system. The
individual levels are ordered from Level0 to Level3 (the QTASK block precedes Level0).

All the tasks of the given level <i> are executed with the same priority given by
the pri<i> parameter of the EXEC block. The execution period of the task is given by a
multiple of the factor parameter and the base tick of the given level <i> ntick<i>∗tick
in the EXEC block. The time allocated for the task to execute starts at the start tick and
ends at the stop tick, where the inequality 0 ≤ start < stop ≤ ntick<i> must hold for
the start and stop parameters. The RexComp compiler further checks whether the stop
parameter of the preceding task is less or equal to the stop parameter of the succeeding
task, i.e. the allocated time intervals for individual tasks cannot overlap. In the case the
timing of individual levels is inappropriate, the tasks are interrupted by tasks and other
events with higher priority and might not execute in the allocated time. In such a case
the execution is not aborted but delayed (in contrary to the QTASK block). The RexView
program diagnoses whether the execution delay is occasional or permanent (the Level

and Task tabs).

Input
prev Input for connecting the task with the corresponding Level<i> output

of the EXEC block or with the next output of the preceding task of the
given level

long

39

Output
next Output for connecting to the prev input of the succeeding task in the

given level
long

Parameters
factor Execution factor; multiple of the execution period of the i-th level

of the EXEC block defining the execution period of the task: factor ∗
tick ∗ ntick<i> �1

long

start Number of tick of the given computational level which should trigger
the task execution ↓0 ↑ntick<i> �0

long

stop Number of tick of the given computational level by which the task
execution should finish ↓start+1 ↑ntick<i> �1

long

stack Stack size [bytes] �10240 long

filename Name of the file with the .mdl extension which contains the task
algorithm. In the case filename is not specified, the filename is given
by the name of the TASK block in the project main file (the .mdl

extension is attached automatically)

string

40 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

TIODRV – The REX control system input/output driver with
tasks

Block Symbol Licence: STANDARD

prev next
Tasks

TIODRV

Function Description
The TIODRV block is used for configuration of special drivers of the REX control system
which are able to execute tasks defined by the IOTASK blocks. See the corresponding
driver documentation.

The prev input of the IOTASK block must be connected with the Tasks output of the
TIODRV block. If the driver allows so, the next output of a TIODRV block which is already
included in the configuration can be used to add more tasks. The next output of the
last task remains unconnected. On the contrary to standard tasks, the number and order
of the driver’s tasks are not checked by the RexComp compiler but by the input-output
driver itself.

If the driver cannot guarantee periodic execution of some task (e.g. task is triggered
by an external event), a corresponding flag is set for the given task. Such a task cannot
contain blocks which require constant sampling period (e.g. the majority of controllers).
If some of these restricted blocks are used, the executive issues a task execution error,
which can be traced using the RexView program.

Input
prev Input for connecting the driver with the Drivers output of the EXEC

block or with the next output of the preceding driver
long

Outputs
next Output for connecting to the prev input of the succeeding driver long

Tasks The IOTASK blocks executed by the driver are connected to this output
using the prev input

long

Parameters
module Name of the module, which includes the input/output driver

(mandatory only if module name differs from classname)
string

classname Name of the driver class; case sensitive! �DrvClass string

cfgname Name of the driver configuration file �iodrv.rio string

41

factor Multiple of the EXEC block’s tick parameter defining the driver’s task
execution period ↓1 �10

long

stack Stack size of the driver’s task in bytes ↓1024 �10240 long

pri Logical priority of the driver’s task ↓1 ↑31 �3 long

timer Driver is a source of time bool

42 CHAPTER 2. EXEC – REAL-TIME EXECUTIVE CONFIGURATION

WWW – Internal Web Server Content

Block Symbol Licence: STANDARD

WWW

Function Description
The WWW block is a so-called "pseudo-block" which stores additional information about a
contents of an internal web server. The only file where the block can be placed is a main
project file with a single EXEC block an so it belongs to the EXEC category.

The block does not have any inputs or outputs. The block itself does not become
a part of a final binary configuration but the data it points to does. Be careful when
inserting big files or directories as the integrated web server is not optimized for a large
data. It is possible to shrink the data by enabling gzip compression. The compression
also reduces amount of data transferred to the client, but decompression must be per-
formed on the server side when a client does not support gzip compression which brings
additional load on the target device.

Parameters
Source Specifies a source directory or a file name that should be placed on

the target and should be available via integrated web server using
standard HTTP and/or HTTPS protocol. The path may be absolute
or relative to path of a main project file.

string

Target Specifies a target directory or a file name on the integrated web server. string

Compression Enables data compression in gzip format. bool

Chapter 3

INOUT – Input and output blocks

Contents
Display – Numeric display of input values 44
From, INSTD – Signal connection or input 45
Goto, OUTSTD – Signal source or output 47
GotoTagVisibility – Visibility of the signal source 49
Inport, Outport – Input and output port 50
SubSystem – Subsystem block . 52
INQUAD, INOCT, INHEXD – Multi-input blocks 53
OUTQUAD, OUTOCT, OUTHEXD – Multi-output blocks 54
OUTRQUAD, OUTROCT, OUTRHEXD – Multi-output blocks with verification 55
OUTRSTD – Output block with verification 57
QFC – Quality flags coding . 58
QFD – Quality flags decoding . 59
VIN – Validation of the input signal 60
VOUT – Validation of the output signal 61

43

44 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

Display – Numeric display of input values

Block Symbol Licence: STANDARD

0

Display

Function Description
The DISPLAY block shows input value in a selected format. A suffix may be appended
to the value. An actual value is shown immediately in RexDraw even without turning on
Watch mode for the block, and the same in WebWatch. Actual conversion of input into
its textual representation is performed on the target device in each Decimation period
so the value displayed may be also read via the REST interface or used in visualization.

Input
u Input signal unknown

Parameters
Format Format of displayed value �1 long

Best fit

short

long . .
short_e

long_e

bank . .
hex . . .
bin . . .
dec . . .oct . . .

Decimation Value is evaluated in each Decimation period ↓1 ↑100000 �1 long

Suffix A string to be appended to the value string

45

From, INSTD – Signal connection or input

Block Symbols Licence: STANDARD

[A] [DRV__A]

Function Description
The two blocks From (signal connection) and INSTD (standard input) share the same
symbol. They are used for referring to another signal, either internal or external.

The From block can be used in both the REX control system and the Matlab-Simulink
environment, the INSTD block exists only in the REX control system.

The following rules define how the RexComp compiler distinguishes between the two
block types:

• If the parameter GotoTag contains the __ delimiter (two successive ’_’ characters),
then the block is of the INSTD type. The part of the parameter (substring) before
the delimiter (DRV in the example above) is considered to be the name of an IODRV

type block contained in the main file of the project. The RexComp compiler returns
an error when such block does not exist. If the driver exists in the project, the other
part of the GotoTag parameter (following the delimiter, A in this case) is considered
to be the name of a signal within the appropriate driver. This name is validated
by the driver and in the case of success, an instance of the INSTD block is created.
This instance collects real-time data from the driver and feeds the data into the
control algorithm at each execution of the task it is included in.

• If there is no __ delimiter in the GotoTag parameter, the block is of type From. A
matching Goto block with the same GotoTag parameter and required visibility given
by the TagVisibility parameter (see the Goto block description) is searched. In
case it is not found, the RexComp compiler issues a warning and deletes the From

block. Otherwise an "invisible" connection is created between the corresponding
blocks. The From block is removed also in this case and thus it is not contained in
the resulting control system configuration.

There is no INSTD block in the Matlab-Simulink system, even the blocks whose
GotoTag parameter contains the __ delimiter are considered to be of the From type.
This property is suitable for simulation of both the control system and the controlled
system. The model can be connected via From and Goto blocks, whose GotoTag pa-
rameters include the __ delimiter. Moreover it is possible to use one .mdl file for both
simulation and real time control without any modifications if the controlled system model
is "hidden" in a subsystem whose name starts with Simulation. The RexComp compiler
ignores (omits) such subsystems. For further details see [2].

46 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

Output
value Signal coming from I/O driver or Goto block. The type of output is

determined by the type of the signal which is being referred by the
GotoTag parameter.

unknown

Parameter
GotoTag Reference to a Goto block with the same GotoTag parameter, which

should be connected with the From block or a reference to input signal
of the REX control system driver, which should provide data through
the block’s output.

string

47

Goto, OUTSTD – Signal source or output

Block Symbols Licence: STANDARD

[A] [DRV__A]

Function Description
The two blocks Goto (signal source) and OUTSTD (standard output) share the same sym-
bol. They are used for providing signals, either internal or external.

The Goto block can be used in both the REX control system and the Matlab-Simulink
environment, the OUTSTD block exists only in the REX control system.

The following rules define how the RexComp compiler distinguishes between the two
block types:

• If the parameter GotoTag contains the __ delimiter (two successive ’_’ characters),
then the block is of the OUTSTD type. The part of the parameter (substring) before
the delimiter (DRV in the example above) is considered to be the name of an IODRV

type block contained in the main file of the project. The RexComp compiler returns
an error when such block does not exist. If the driver exists in the project, the other
part of the GotoTag parameter (following the delimiter, A in this case) is considered
to be the name of a signal within the appropriate driver. This name is validated
by the driver and in the case of success, an instance of the OUTSTD block is created.
This instance collects real-time data from the driver and feeds the data into the
control algorithm at each execution of the task it is included in.

• If there is no __ delimiter in the GotoTag parameter, the block is of type Goto. A
matching From block with the same GotoTag parameter for which the Goto block is
visible is searched. In case it is not found, the RexComp compiler issues a warning
and deletes the Goto block. Otherwise an "invisible" connection is created between
the corresponding blocks. The Goto block is removed also in this case thus it is not
contained in the resulting control system configuration.

The other parameter of the Goto block defines the visibility of the block within the
given .mdl file. The TagVisibility parameter can be local, global or scoped, whose
meaning is explained in the table below. This parameter is ignored if the block is compiled
as the OUTSTD block.

There is no OUTSTD block in the Matlab-Simulink system, even the blocks whose
GotoTag parameter contains the __ delimiter are considered to be of the Goto type. This
property is suitable for simulation of both the control system and the controlled sys-
tem. The model can be connected via From and Goto blocks, whose GotoTag parameters

48 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

include the __ delimiter. Moreover, it is possible to use one .mdl file for both simula-
tion and real time control without any modifications if the controlled system model is
"hidden" in a subsystem whose name starts with Simulation. The RexComp compiler
ignores (omits) such subsystems. For further details see [2].

Input
value Signal going to I/O driver or From block. In case of connection to an

I/O driver, the type of input is determined by the I/O driver from the
GotoTag parameter.

unknown

Parameters
GotoTag Reference to a From block with the same GotoTag parameter, which

should be connected with the Goto block or a reference to output
signal of the REX control system driver, which should send the data
from block input to the process.

string

TagVisibility Visibility (availability) of the block within the .mdl file. Defines
conditions under which the two corresponding Goto and From blocks
are reciprocally available: �local

string

local the two blocks must be in the same subsystem
global blocks can be anywhere in the given .mdl file
scoped the From block must be placed in the same subsystem or in

any lower hierarchical level below the GotoTagVisibility
block with the same GotoTag parameter

49

GotoTagVisibility – Visibility of the signal source

Block Symbol Licence: STANDARD

{A}

GotoTagVisibility

Function Description
The GotoTagVisibility blocks specify the visibility of the Gotoblocks with scoped visi-
bility. The symbol (tag) defined in the Goto block by the GotoTag parameter is available
for all From blocks in the subsystem which contains the appropriate GotoTagVisibility
block and also in all subsystems below in the hierarchy.

The GotoTagVisibility block is required only for Goto blocks whose TagVisibility
parameter is set to scoped. There is no need for the GotoTagVisibility block for local
or global visibility.

The GotoTagVisibility block is used only during configuration compilation by the
RexComp compiler, it is not included in the final configuration as it does not perform
any action in real-time.

Parameter
GotoTag Reference to a Goto block with the GotoTag parameter, whose

visibility is defined by the position of this block (GotoTagVisibility)
string

50 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

Inport, Outport – Input and output port

Block Symbols Licence: STANDARD

1

Inport

1

Outport

Function Description
The Inport and Outport blocks are used for connecting signals over individual hierar-
chical levels. There are two possible ways to use these blocks in the REX control system:

1. To connect inputs and outputs of the subsystem. The blocks create an interface
between the symbol of the subsystem and its inner algorithm (sequence of blocks
contained in the subsystem). The Inport or Outport blocks are located inside the
subsystem, the name of the given port is displayed in the subsystem symbol in the
upper hierarchy level.

2. To provide connection between various tasks. The port blocks are located in the
highest hierarchy level of the given task (.mdl file) in this case. The connection of
Inport and Outport blocks in various tasks is checked and created by the RexComp
compiler.

The ordering of the blocks to be connected is based on the Port parameter of the given
block. The numberings of the input and output ports are independent on each other. The
numbering is automatic in both the RexDraw and the Matlab-Simulink system, it starts
at 1. The numbers of ports must be unique in the given hierarchy level, in case of manual
modification of the port number the other ports are re-numbered automatically. Be aware
that after re-numbering in an already connected subsystem the inputs (or outputs) in
the upper hierarchy level are re-ordered, which results in probably unintended change in
signal mapping!

There are other functionalities of the port blocks in the Matlab-Simulink environ-
ment, but these are not used in the REX control system. Detailed description of the
blocks for Matlab-Simulink can be found in [3].

Input
value Value going to the output pin or Inport unknown

Output
value Value coming from the input pin or Outport unknown

51

Parameter
Port Ordering of the Inport or Outport pins long

52 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

SubSystem – Subsystem block

Block Symbol Licence: STANDARD

Inport_1 Outport_1

Subsystem

Function Description
The Subsystem block is a cornerstone of hierarchical control (and simulation) algorithm.
It allows embedding a subsystem into another system (or subsystem). The subsystem
contains blocks and their connections. The subsystem is executed as ordered sequence of
blocks during real-time operation of the REX control system. Therefore it is sometimes
referred to as sequence. All blocks from the surroundings of the subsystem are executed
strictly before or after the whole subsystem is executed. This is called atomic subsystem
in the Matlab-Simulink terminology, see [3].

There are two possible ways of creating a subsystem in both the RexDraw program
and the Matlab-Simulink editor (only the RexDraw technique is described further):

• Copy the Subsystem block from the INOUT library to the given diagram (.mdl file).
Blocks can be inserted into the subsystem upon its opening (including Inport and
Outport blocks).

• Select a group of blocks and use the Create subsystem command (Create subsystem

in the Edit menu). The selected blocks are then replaced by the subsystem block,
which contains all the original blocks and Inport and Outport blocks for signals
crossing the subsystem boundary. Ports for all unconnected inputs and outputs are
created as well.

Inputs
The number and names of the inputs are given by the number and names of the Inport

blocks contained within the subsystem.

Outputs
The number and names of the outputs are given by the number and names of the Outport
blocks contained within the subsystem.

53

INQUAD, INOCT, INHEXD – Multi-input blocks

Block Symbols Licence: STANDARD

val0
val1
val2
val3

INQUAD

val0
val1
val2
val3
val4
val5
val6
val7

INOCT

val0
val1
val2
val3
val4
val5
val6
val7
val8
val9

val10
val11
val12
val13
val14
val15

INHEXD

Function Description
The REX control system allows not only reading of a single input signal but also simulta-
neous reading of multiple signals through just one block (for example all signals from one
module or plug-in board). The blocks INQUAD, INOCT and INHEXD are designed for these
purposes. They differ only in the maximum number of signals (4, 8 and 16, respectively).
These blocks are not included in the RexLib function block library for Matlab-Simulink.

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks.
The overhead necessary for data acquisition through input/output drivers is mini-

mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are read simultane-
ously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Outputs
vali Input signals fed into the control algorithm through input/output

drivers. The type and location of individual signals is described in
the user manual for the given driver.

unknown

54 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

OUTQUAD, OUTOCT, OUTHEXD – Multi-output blocks

Block Symbols Licence: STANDARD

val0
val1
val2
val3

OUTQUAD

val0
val1
val2
val3
val4
val5
val6
val7

OUTOCT

val0
val1
val2
val3
val4
val5
val6
val7
val8
val9
val10
val11
val12
val13
val14
val15

OUTHEXD

Function Description
The REX control system allows not only writing of a single output signal but also si-
multaneous writing of multiple signals through just one block (for example all signals of
one module or plug-in board). The blocks OUTQUAD, OUTOCT and OUTHEXD are designed
for these purposes. They differ only in the maximum number of signals (4, 8 and 16,
respectively). These blocks are not included in the RexLib function block library for
Matlab-Simulink.

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks.
The overhead necessary for setting the outputs through input/output drivers is mini-

mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are written simulta-
neously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Inputs
vali Signals to be sent to the process via the input/output driver. The type

and location of individual signals is described in the user manual for
the given driver.

unknown

55

OUTRQUAD, OUTROCT, OUTRHEXD – Multi-output blocks with veri-
fication

Block Symbols Licence: ADVANCED

val0
val1
val2
val3

raw0
raw1
raw2
raw3

OUTRQUAD

val0
val1
val2
val3
val4
val5
val6
val7

raw0
raw1
raw2
raw3
raw4
raw5
raw6
raw7

OUTROCT

val0
val1
val2
val3
val4
val5
val6
val7
val8
val9
val10
val11
val12
val13
val14
val15

raw0
raw1
raw2
raw3
raw4
raw5
raw6
raw7
raw8
raw9

raw10
raw11
raw12
raw13
raw14
raw15

OUTRHEXD

Function Description
The OUTRQUAD, OUTROCT and OUTRHEXD blocks allow simultaneous writing of multiple
signals, they are similar to the OUTQUAD, OUTOCT and OUTHEXD blocks. Additionally they
provide feedback information about the result of write operation for the given output.

There are two ways to inform the control algorithm about the result of write operation
through the rawi output:

• Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of D/A converter (thus the raw notation).

• Through reading the quality flags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The rawi outputs are not always refreshed right at the moment of block execution, there
is some delay given by the properties of the driver, communication line and/or target
platform.

These blocks are not included in the RexLib function block library for Matlab-
Simulink.

Inputs
vali Output signals defined by the control algorithm through the

input/output driver. The type and location of individual signals is
described in the user manual for the given driver.

unknown

56 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

Outputs
rawi Feedback information about the write operation result. The type and

meaning of individual signals is described in the user manual for the
given driver.

unknown

57

OUTRSTD – Output block with verification

Block Symbol Licence: ADVANCED

value raw

OUTRSTD

Function Description
The OUTRSTD block is similar to the OUTSTD block. Additionally it provides feedback
information about the result of write operation for the output signal.

There are two ways to inform the control algorithm about the result of write operation
through the raw output:

• Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of D/A converter (thus the raw notation).

• Through reading the quality flags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The raw outputs is not refreshed right at the moment of block execution, there is some
delay given by the properties of the driver, communication line and/or target platform.

This block is not included in the RexLib function block library for Matlab-Simulink.

Input
value Output signal defined by the control algorithm through the

input/output driver. The type and naming of the signal is described
in the user manual for the given driver.

unknown

Output
raw Feedback information about the write operation result. The type and

meaning of the signal is described in the user manual for the given
driver.

unknown

58 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

QFC – Quality flags coding

Block Symbol Licence: ADVANCED

iq
is
il

iqf

QFC

Function Description
The QFC block creates the resulting signal iqf representing the quality flags by combining
three components iq, is and il. The quality flags are part of each input or output signal
in the REX control system. Further details about quality flags can be found in chapter
1.4 of this manual. The RexLib function block library for Matlab-Simulink does not use
any quality flags.

It is possible to use the QFC block together with the VOUT block to force arbitrary
quality flags for a given signal. Reversed function to the QFC block is performed by the
QFD block.

Inputs
iq Basic quality type flags, see table 1.2, page 17 long

is Substatus flags, see [1] long

il Limits flags, see [1] long

Output
iqf Bit combination of the iq, is and il input signals long

59

QFD – Quality flags decoding

Block Symbol Licence: ADVANCED

iqf
iq
is
il

QFD

Function Description
The QFD decomposes quality flags to individual components iq, is and il. The quality
flags are part of each input or output signal in the REX control system. Further details
about quality flags can be found in chapter 1.4 of this manual. The RexLib function block
library for Matlab-Simulink does not use any quality flags.

It is possible to use the QFD block together with the VIN block for detailed processing
of quality flags of a given signal. Reversed function to the QFD block is performed by the
QFC block.

Input
iqf Quality flags to be decomposed to iq, is and il components long

Outputs
iq Basic quality type flags, see table 1.2, page 17 long

is Substatus flags, see [1] long

il Limits flags, see [1] long

60 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

VIN – Validation of the input signal

Block Symbol Licence: ADVANCED

u

sv

yg
QG
iqf

VIN

Function Description
The VIN block can be used for verification of the input signal quality in the REX control
system. Further details about quality flags can be found in chapter 1.4 of this manual.
The RexLib function block library for Matlab-Simulink does not use any quality flags.

The block continuously separates the quality flags from the input u and feeds them to
the iqf output. Based on these quality flags and the GU parameter (Good if Uncertain),
the input signals are processed in the following manner:

• For GU = off the output QG is set to onif the quality is GOOD. It is set to QG = off

in case of BAD or UNCERTAIN quality.

• For GU = on the output QG is set to onif the quality is GOOD or UNCERTAIN. It is set
to QG = on only in case of BAD quality.

The output yg is equal to the u input if QG = on. Otherwise it is set to yg = sv

(substitution variable).

Inputs
u Input signal whose quality is assessed. The type of the signal is

determined upon the connected signal.
unknown

sv Substitute value for an error case unknown

Outputs
yg Validated output signal (yg = u for QG = on or yg = sv for QG = off) unknown

QG Indicator of input signal acceptability bool

iqf Complete quality flag separated from the u input signal long

Parameter
GU Acceptability of UNCERTAIN quality bool

off . . . Uncertain quality unacceptable
on Uncertain quality acceptable

61

VOUT – Validation of the output signal

Block Symbol Licence: ADVANCED

u
iqf yq

VOUT

Function Description
It is possible to use the VOUT block to force arbitrary quality flags for a given signal.
The desired quality flags are given by the input signal iqf. Further details about quality
flags can be found in chapter 1.4 of this manual. The RexLib function block library for
Matlab-Simulink does not use any quality flags.

Inputs
u Input signal whose quality flags are being replaced. The type of the

signal is determined upon the connected signal.
unknown

iqf Desired quality flags long

Output
yq Resulting signal composed from input u and quality flags given by the

iqf input
unknown

62 CHAPTER 3. INOUT – INPUT AND OUTPUT BLOCKS

Chapter 4

MATH – Math blocks

Contents
ABS_ – Absolute value . 65
ADD – Addition of two signals . 66
ADDQUAD, ADDOCT, ADDHEXD – Multi-input addition 67
CNB – Boolean (logic) constant . 68
CNE – Enumeration constant . 69
CNI – Integer constant . 70
CNR – Real constant . 71
DIF_ – Difference . 72
DIV – Division of two signals . 73
EAS – Extended addition and subtraction 74
EMD – Extended multiplication and division 75
FNX – Evaluation of single-variable function 76
FNXY – Evaluation of two-variables function 78
GAIN – Multiplication by a constant 80
GRADS – Gradient search optimization 81
IADD – Integer addition . 83
ISUB – Integer subtraction . 85
IMUL – Integer multiplication . 87
IDIV – Integer division . 89
IMOD – Remainder after integer division 90
LIN – Linear interpolation . 91
MUL – Multiplication of two signals 92
POL – Polynomial evaluation . 93
REC – Reciprocal value . 94
REL – Relational operator . 95
RTOI – Real to integer number conversion 96

63

64 CHAPTER 4. MATH – MATH BLOCKS

SQR – Square value . 97
SQRT_ – Square root . 98
SUB – Subtraction of two signals . 99

65

ABS_ – Absolute value

Block Symbol Licence: STANDARD

u y
sgn

ABS_

Function Description
The ABS_ block computes the absolute value of the analog input signal u. The output y
is equal to the absolute value of the input and the sgn output denotes the sign of the
input signal.

sgn =


−1, for u < 0,
0, for u = 0,
1, for u > 0.

Input
u Analog input of the block double

Outputs
y Absolute value of the input signal double

sgn Indication of the input signal sign long

66 CHAPTER 4. MATH – MATH BLOCKS

ADD – Addition of two signals

Block Symbol Licence: STANDARD

u1
u2 y

ADD

Function Description
The ADD blocks sums two analog input signals. The output is given by

y = u1+ u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

Output
y Sum of the input signals double

67

ADDQUAD, ADDOCT, ADDHEXD – Multi-input addition

Block Symbols Licence: STANDARD

u1
u2
u3
u4

y

ADDQUAD

u1
u2
u3
u4
u5
u6
u7
u8

y

ADDOCT

u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

y

ADDHEXD

Function Description
The ADDQUAD, ADDOCT and ADDHEXD blocks sum (or subtract) up to 16 input signals. The
nl parameter defines the inputs which are subtracted instead of adding. For an empty nl

parameter the block output is given by y = u1+ u2+ u3+ u4+ u5+ u6+ u7+ . . .+ u16.
For e.g. nl=2,5,7, the block implements the function y = u1− u2+ u3+ u4− u5+ u6−
u7+ . . .+ u16.

Note that the ADD and SUB blocks are available for simple addition and subtraction
operations.

Inputs
u1..u16 Analog input signals double

Output
y Resulting value double

Parameter
nl List of signals to subtract instead of adding. The format of the list

is e.g. 1,3..5,8. Third-party programs (Simulink, OPC clients etc.)
work with an integer number, which is a binary mask, i.e. 157 (binary
10011101) in the mentioned case.

long

68 CHAPTER 4. MATH – MATH BLOCKS

CNB – Boolean (logic) constant

Block Symbol Licence: STANDARD

on

CNB

Function Description
The CNB block stands for a Boolean (logic) constant.

Output
Y Logical output of the block bool

Parameter
YCN Boolean constant �on bool

off . . . Disabled
on Enabled

69

CNE – Enumeration constant

Block Symbol Licence: STANDARD

1: option A

CNE

Function Description
The CNE block allows selection of a constant from a predefined popup list. The popup list
of constants is defined by the pupstr string, whose syntax is obvious from the default
value shown below. The output value corresponds to the number at the beginning of the
selected item. In case the pupstr string format is invalid, the output is set to 0.

There is a library called CNEs in Simulink, which contains CNE blocks with the most
common lists of constants.

Parameters
yenum Enumeration constant �1: option A string

pupstr Popup list definition �1: option A|2: option B|3: option C string

Output
iy Integer output of the block long

70 CHAPTER 4. MATH – MATH BLOCKS

CNI – Integer constant

Block Symbol Licence: STANDARD

1

CNI

Function Description
The CNI block stands for an integer constant.

Output
iy Integer output of the block long

Parameter
icn Integer constant �1 long

71

CNR – Real constant

Block Symbol Licence: STANDARD

1

CNR

Function Description
The CNR block stands for a real constant.

Output
y Analog output of the block double

Parameter
ycn Real constant �1.0 double

72 CHAPTER 4. MATH – MATH BLOCKS

DIF_ – Difference

Block Symbol Licence: STANDARD

u y

DIF_

Function Description
The DIF_ block differentiates the input signal u according to the following formula

yk = uk − uk−1,

where uk = u, yk = y and uk−1 is the value of input u in the previous cycle (delay TS ,
which is the execution period of the block).

Input
u Analog input of the block double

Output
y Difference of the input signal double

Parameters
ISSF Zero output at start-up bool

off . . . In the first cycle the output will be y = u.
on Zero output in the first cycle, y = 0.

73

DIV – Division of two signals

Block Symbol Licence: STANDARD

u1
u2

y
E

DIV

Function Description
The DIV block divides two analog input signals y = u1/u2. In case u2 = 0, the output E
is set to onand the output y is substituted by y = yerr.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

Outputs
y Quotient of the inputs double

E Error flag – division by zero bool

Parameter
yerr Substitute value for an error case �1.0 double

74 CHAPTER 4. MATH – MATH BLOCKS

EAS – Extended addition and subtraction

Block Symbol Licence: STANDARD

u1
u2
u3
u4

y

EAS

Function Description
The EAS block sums input analog signals u1, u2, u3 and u4 with corresponding weights
a, b, c and d. The output y is then given by

y = a ∗ u1+ b ∗ u2+ c ∗ u3+ d ∗ u4+ y0.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

u3 Third analog input of the block double

u4 Fourth analog input of the block double

Output
y Analog output of the block double

Parameters
a Weighting coefficient of the u1 input �1.0 double

b Weighting coefficient of the u2 input �1.0 double

c Weighting coefficient of the u3 input �1.0 double

d Weighting coefficient of the u4 input �1.0 double

y0 Additive constant (bias) double

75

EMD – Extended multiplication and division

Block Symbol Licence: STANDARD

u1
u2
u3
u4

y

E

EMD

Function Description
The EMD block multiplies and divides analog input signals u1, u2, u3 and u4 with corre-
sponding weights a, b, c and d. The output y is then given by

y =
(a ∗ u1+ a0)(b ∗ u2+ b0)

(c ∗ u3+ c0)(d ∗ u4+ d0)
. (4.1)

The output E is set to on in the case that the denominator in the equation (4.1) is equal
to 0 and the output y is substituted by y = yerr.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

u3 Third analog input of the block double

u4 Fourth analog input of the block double

Outputs
y Analog output of the block double

E Error flag – division by zero bool

Parameters
a Weighting coefficient of the u1 input �1.0 double

a0 Additive constant for u1 input double

b Weighting coefficient of the u2 input �1.0 double

b0 Additive constant for u2 input double

c Weighting coefficient of the u3 input �1.0 double

c0 Additive constant for u3 input double

d Weighting coefficient of the u4 input �1.0 double

d0 Additive constant for u4 input double

yerr Substitute value for an error case �1.0 double

76 CHAPTER 4. MATH – MATH BLOCKS

FNX – Evaluation of single-variable function

Block Symbol Licence: STANDARD

u y
E

FNX

Function Description
The FNX block evaluates basic math functions of single variable. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.
List of functions:

ifn: shortcut function constraints on u

1: acos arccosine u ∈< −1.0, 1.0 >
2: asin arcsine u ∈< −1.0, 1.0 >
3: atan arctangent –
4: ceil rounding towards the nearest higher integer –
5: cos cosine –
6: cosh hyperbolic cosine –
7: exp exponential function eu –
8: exp10 exponential function 10u –
9: fabs absolute value –
10: floor rounding towards the nearest lower integer –
11: log logarithm u > 0
12: log10 decimal logarithm u > 0
13: random arbitrary number z ∈< 0, 1 > (u independent) –
14: sin sine –
15: sinh hyperbolic sine –
16: sqr square function –
17: sqrt square root u > 0
18: srand changes the seed for the random function to u u ∈ N
19: tan tangent –
20: tanh hyperbolic tangent –

The error output is activated (E = on) in the case when the input value u falls out of
its bounds or an error occurs during evaluation of the selected function (implementation
dependent), e.g. square root of negative number. The output is set to substitute value
in such case (y = yerr).

77

Input
u Analog input of the block double

Outputs
y Result of the selected function double

E Error flag bool

Parameters
ifn Function type (see table above) �1 long

yerr Substitute value for an error case double

78 CHAPTER 4. MATH – MATH BLOCKS

FNXY – Evaluation of two-variables function

Block Symbol Licence: STANDARD

u1
u2

y
E

FNXY

Function Description
The FNXY block evaluates basic math functions of two variables. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.
List of functions:

ifn: shortcut function constraints on u1, u2
1: atan2 arctangent u1/u2 –
2: fmod remainder after division u1/u2 u2 6= 0.0

3: pow exponentiation of the inputs y = u1u2 –

The atan2 function result belongs to the interval 〈−π, π〉. The signs of both inputs
u1 a u2 are used to determine the appropriate quadrant.

The fmod function computes the remainder after division u1/u2 such that u1 = i · u2+ y,
where i is an integer, the signs of the y output and the u1 input are the same and the
following holds for the absolute value of the y output: |y| < |u2|.

The error output is activated (E = on) in the case when the input value u2 does
not meet the constraints or an error occurs during evaluation of the selected function
(implementation dependent), e.g. division by zero. The output is set to substitute value
in such case (y = yerr).

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

Outputs
y Result of the selected function double

E Error flag bool

off . . . No error
on An error occurred

79

Parameters
ifn Function type (see the table above) �1 long

1 atan2
2 fmod
3 pow

yerr Substitute value for an error case double

80 CHAPTER 4. MATH – MATH BLOCKS

GAIN – Multiplication by a constant

Block Symbol Licence: STANDARD

u y

GAIN

Function Description
The GAIN block multiplies the analog input u by a real constant k. The output is then

y = ku.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameter
k Gain �1.0 double

81

GRADS – Gradient search optimization

Block Symbol Licence: ADVANCED

f

x0

START

BRK

x
xopt
fopt

BSY
iter

E
iE

GRADS

Function Description
The GRADS block performs one-dimensional optimization of the f(x, v) function by gra-
dient method, where x ∈ 〈xmin, xmax〉 is the optimized variable and v is an arbitrary
vector variable. It is assumed that the value of the function f(x, v) for given x at time
k is enumerated and fed to the f input at time k + n ∗ TS , where TS is the execution
period of the GRADS block. This means that the individual optimization iterations have
a period of n ∗ TS . The length of step of the gradient method is given by

grad = (fi − fi−1) ∗ (dx)i−1

(dx)i = −gamma ∗ grad,

where i stands for i-th iteration. The step size is restricted to lie within the interval
〈dmin, dmax〉. The value of the optimized variable for the next iteration is given by

xi+1 = xi + (dx)i

Inputs
f Value of the optimized f(.) for given variable x double

x0 Optimization starting point double

START Starting signal (rising edge) bool

BRK Termination signal bool

Outputs
x Current value of the optimized variable double

xopt Resulting optimal value of the x variable double

fopt Resulting optimal value of the function f(x, v) double

BSY Indicator of running optimization bool

iter Number of current iteration long

E Error flag bool

82 CHAPTER 4. MATH – MATH BLOCKS

iE Error code long

1 x /∈< xmin, xmax >
2 x = xmin or x = xmax

Parameters
xmin Lower limit for the x variable double

xmax Upper limit for the x variable �10.0 double

gamma Coefficient for determining the step size of the gradient optimization
method �0.3

double

d0 Initial step size �0.05 double

dmin Minimum step size �0.01 double

dmax Maximum step size �1.0 double

n Iteration period (in sampling periods TS) �100 long

itermax Maximum number of iterations �20 long

83

IADD – Integer addition

Block Symbol Licence: STANDARD

i1
i2

n
E

IADD

Function Description
The IADD block sums two integer input signals n = i1 + i2. The range of integer num-
bers in a computer is always restricted by the variable type. This block uses the vtype

parameter to specify the type. If the sum fits in the range of the given type, the result
is the ordinary sum. In the other cases the result depends on the SAT parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 + 2770 = -32766).

For SAT = on the overflow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 30000
+ 2770 = 32767).

Inputs
i1 First integer input of the block ↓-9,22E+18 ↑9,22E+18 long

i2 Second integer input of the block ↓-9,22E+18 ↑9,22E+18 long

Outputs
n Integer sum of the input signals long

E Error flag bool

off . . . No error
on An error occurred

Parameters
vtype Numeric type �4 long

2 Byte (range 0 ... 255)
3 Short (range -32768 ... 32767)
4 Long (range -2147483648 ... 2147483647)
5 Word (range 0 ... 65536)
6 DWord (range 0 ... 4294967295)
10 Large (range -9223372036854775808...9223372036854775807)

84 CHAPTER 4. MATH – MATH BLOCKS

SAT Saturation (overflow) checking bool

off . . . Overflow is not checked
on Overflow is checked

85

ISUB – Integer subtraction

Block Symbol Licence: STANDARD

i1
i2

n
E

ISUB

Function Description
The ISUB block subtracts two integer input signals n = i1 − i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the difference fits in the range of the given type,
the result is the ordinary sum. In the other cases the result depends on the SAT parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 - -2770 = -32766).

For SAT = on the overflow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 30000
- -2770 = 32767).

Inputs
i1 First integer input of the block ↓-9,22E+18 ↑9,22E+18 long

i2 Second integer input of the block ↓-9,22E+18 ↑9,22E+18 long

Parameters
vtype Numeric type �4 long

2 Byte (range 0 ... 255)
3 Short (range -32768 ... 32767)
4 Long (range -2147483648 ... 2147483647)
5 Word (range 0 ... 65536)
6 DWord (range 0 ... 4294967295)
10 Large (range -9223372036854775808...9223372036854775807)

SAT Saturation (overflow) checking bool

off . . . Overflow is not checked
on Overflow is checked

Outputs
n Integer difference between the input signals long

86 CHAPTER 4. MATH – MATH BLOCKS

E Error flag bool

off . . . No error
on An error occurred

87

IMUL – Integer multiplication

Block Symbol Licence: STANDARD

i1
i2

n
E

IMUL

Function Description
The IMUL block multiplies two integer input signals n = i1 ∗ i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the multiple fits in the range of the given type,
the result is the ordinary multiple. In the other cases the result depends on the SAT

parameter.
The overflow is not checked for SAT = off, i.e. the output E = off and the output

value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 2000 * 20 = -25536).

For SAT = on the overflow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 2000

* 20 = 32767).

Inputs
i1 First integer input of the block ↓-9,22E+18 ↑9,22E+18 long

i2 Second integer input of the block ↓-9,22E+18 ↑9,22E+18 long

Parameters
vtype Numeric type �4 long

2 Byte (range 0 ... 255)
3 Short (range -32768 ... 32767)
4 Long (range -2147483648 ... 2147483647)
5 Word (range 0 ... 65536)
6 DWord (range 0 ... 4294967295)
10 Large (range -9223372036854775808...9223372036854775807)

SAT Saturation (overflow) checking bool

off . . . Overflow is not checked
on Overflow is checked

Outputs
n Integer product of the input signals long

88 CHAPTER 4. MATH – MATH BLOCKS

E Error flag bool

off . . . No error
on An error occurred

89

IDIV – Integer division

Block Symbol Licence: STANDARD

i1
i2

n
E

IDIV

Function Description
The IDIV block performs an integer division of two integer input signals, n = i1÷ i2,
where ÷ stands for integer division operator. If the ordinary (non-integer, normal) quo-
tient of the two operands is an integer number, the result of integer division is the same.
In other cases the resulting value is obtained by trimming the non-integer quotient’s
decimals (i.e. rounding towards lower integer number). In case i2 = 0, the output E is
set to on and the output n is substituted by n = nerr.

Inputs
i1 First integer input of the block ↓-9,22E+18 ↑9,22E+18 long

i2 Second integer input of the block ↓-9,22E+18 ↑9,22E+18 long

Outputs
n Integer quotient of the inputs long

E Error flag – division by zero bool

Parameters
vtype Numeric type �4 long

2 Byte
3 Short
4 Long
5 Word
6 DWord
10 Large

nerr Substitute value for an error case �1 long

90 CHAPTER 4. MATH – MATH BLOCKS

IMOD – Remainder after integer division

Block Symbol Licence: STANDARD

i1
i2

n
E

IMOD

Function Description
The IMOD block divides two integer input signals, n = i1%i2, where % stands for remain-
der after integer division operator (modulo). If both numbers are positive and the divisor
is greater than one, the result is either zero (for commensurable numbers) or a positive
integer lower than the divisor. In the case that one of the numbers is negative, the result
has the sign of the dividend, e.g. 15%10 = 5, 15%(−10) = 5, but (−15)%10 = −5. In
case i2 = 0, the output E is set to on and the output n is substituted by n = nerr.

Inputs
i1 First integer input of the block ↓-9,22E+18 ↑9,22E+18 long

i2 Second integer input of the block ↓-9,22E+18 ↑9,22E+18 long

Outputs
n Remainder after integer division long

E Error flag – division by zero bool

Parameters
vtype Numeric type �4 long

2 Byte
3 Short
4 Long
5 Word
6 DWord
10 Large

nerr Substitute value for an error case �1 long

91

LIN – Linear interpolation

Block Symbol Licence: STANDARD

u y

LIN

Function Description
The LIN block performs linear interpolation. The following figure illustrates the influence
of the input u and given interpolation points [u1, y1] and [u2, y2] on the output y.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
u1 x-coordinate of the 1st interpolation node double

y1 y-coordinate of the 1st interpolation node double

u2 x-coordinate of the 2nd interpolation node �1.0 double

y2 y-coordinate of the 2nd interpolation node �1.0 double

92 CHAPTER 4. MATH – MATH BLOCKS

MUL – Multiplication of two signals

Block Symbol Licence: STANDARD

u1
u2 y

MUL

Function Description
The MUL block multiplies two analog input signals y = u1 · u2.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

Output
y Product of the input signals double

93

POL – Polynomial evaluation

Block Symbol Licence: STANDARD

u y

POL

Function Description
The POL block evaluates the polynomial of the form:

y = a0 + a1u+ a2u
2 + a3u

3 + a4u
4 + a5u

5 + a6u
6 + a7u

7 + a8u
8.

The polynomial is internally evaluated by using the Horner scheme to improve the nu-
merical robustness.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
ai The i-th coefficient of the polynomial, i = 0, 1, . . . , 8 double

94 CHAPTER 4. MATH – MATH BLOCKS

REC – Reciprocal value

Block Symbol Licence: STANDARD

u y
E

REC

Function Description
The REC block computes the reciprocal value of the input signal u. The output is then

y =
1

u
.

In case u = 0, the error indicator is set to E = on and the output is set to the substitu-
tional value y = yerr.

Input
u Analog input of the block double

Outputs
y Analog output of the block double

E Error flag – division by zero bool

Parameter
yerr Substitute value for an error case �1.0 double

95

REL – Relational operator

Block Symbol Licence: STANDARD

u1
u2 Y

REL

Function Description
The REL block evaluates the binary relation u1 ◦ u2 between the values of the input
signals and sets the output Y according to the result of the relation "◦". The output
is set to Y = on when relation holds, otherwise it is zero (relation does not hold). The
binary operation codes are listed below.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

Output
Y Logical output indicating whether the relation holds bool

Parameter
irel Relation type �1 long

1 equality (==)
2 inequality (!=)
3 less than (<)
4 greater than (>)
5 less than or equal to (<=)
6 greater than or equal to (>=)

96 CHAPTER 4. MATH – MATH BLOCKS

RTOI – Real to integer number conversion

Block Symbol Licence: STANDARD

r i

RTOI

Function Description
The RTOI block converts the real number r to a signed integer number i. The resulting
rounded value is defined by:

i :=


−2147483648 for r ≤ −2147483648.0
round(r) for −2147483648.0 < r ≤ 2147483647.0 ,
2147483647 for r > 2147483647.0

where round(r) stands for rounding to the nearest integer number. The number of the
form n+0.5 (n is integer) is rounded to the integer number with the higher absolute
value, i.e. round(1.5) = 2, round(−2.5) = −3. Note that the numbers −2147483648 and
2147483647 correspond with the lowest and the highest signed number representable in
32-bit format respectively (0x7FFFFFFF and 0x80000000 in hexadecimal form in the C
language).

Input
r Analog input of the block double

Output
i Rounded and converted input signal long

97

SQR – Square value

Block Symbol Licence: STANDARD

u y

SQR

Function Description
The SQR block raises the input u to the power of 2. The output is then

y = u2.

Input
u Analog input of the block double

Output
y Square of the input signal double

98 CHAPTER 4. MATH – MATH BLOCKS

SQRT_ – Square root

Block Symbol Licence: STANDARD

u y
E

SQRT_

Function Description
The SQRT_ block computes the square root of the input u. The output is then

y =
√
u.

In case u < 0, the error indicator is activated (E = on) and the output y is set to the
substitute value y = yerr.

Input
u Analog input of the block double

Outputs
y Square root of the input signal double

E Error flag bool

off . . . No error
on Square root of negative number

Parameter
yerr Substitute value for an error case �1.0 double

99

SUB – Subtraction of two signals

Block Symbol Licence: STANDARD

u1
u2 y

SUB

Function Description
The SUB block subtracts two input signals. The output is given by

y = u1− u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

Inputs
u1 Analog input of the block double

u2 Analog input of the block double

Output
y Difference between the two input signals double

100 CHAPTER 4. MATH – MATH BLOCKS

Chapter 5

ANALOG – Analog signal
processing

Contents
ABSROT – Processing data from absolute position sensor 103
ASW – Switch with automatic selection of input 105
AVG – Moving average filter . 107
AVS – Motion control unit . 108
BPF – Band-pass filter . 109
CMP – Comparator with hysteresis 110
CNDR – Nonlinear conditioner . 111
DEL – Delay with initialization . 113
DELM – Time delay . 114
DER – Derivation, filtering and prediction from the last n+1 samples115
EVAR – Moving mean value and standard deviation 117
INTE – Controlled integrator . 118
KDER – Derivation and filtering of the input signal 120
LPF – Low-pass filter . 122
MINMAX – Running minimum and maximum 123
NSCL – Nonlinear scaling factor . 124
RDFT – Running discrete Fourier transform 125
RLIM – Rate limiter . 127
S1OF2 – One of two analog signals selector 128
SAI – Safety analog input . 131
SEL – Analog signal selector . 134
SELQUAD, SELOCT, SELHEXD – Analog signal selectors 136
SHIFTOCT – Data shift register . 138
SHLD – Sample and hold . 140

101

102 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SINT – Simple integrator . 141
SPIKE – Spike filter . 142
SSW – Simple switch . 144
SWR – Selector with ramp . 145
VDEL – Variable time delay . 146
ZV4IS – Zero vibration input shaper 147

103

ABSROT – Processing data from absolute position sensor

Block Symbol Licence: ADVANCED

u

R1

y
irev
MPI
OLI

ABSROT

Function Description
The ABSROT function block is intended for processing the data from absolute position
sensor on rotary equipment, e.g. a shaft. The absolute sensor has a typical range of 5◦

to 355◦ (or -175◦ to +175◦) but in some cases it is necessary to control the rotation
over a range of more than one revolution. The function block assumes a continuous
position signal, therefore the transition from 355◦ to 5◦ in the input signal means that
one revolution has been completed and the angle is in fact 365◦.

In the case of long-term unidirectional operation the precision of the estimated po-
sition y deteriorates due to the precision of the double data type. For that case the R1

input is available to reset the position y to the base range of the sensor. If the RESR flag
is set to RESR = on, the irev revolutions counter is also reset by the R1 input. In all cases
it is necessary to reset all accompanying signals (e.g. the sp input of the corresponding
controller).

The MPI output indicates that the absolute sensor reading is near to the middle of
the range, which may be the appropriate time to reset the block. On the other hand, the
OLI output indicates that the sensor reached the so-called dead-angle where it cannot
report valid data.

Inputs
u Signal from the absolute position sensor double

R1 Block reset bool

Outputs
y Position output double

irev Number of finished revolutions long

MPI Mid-point indicator bool

OLI Off-limits indicator bool

Parameters
lolim Lower limit of the sensor reading �-3.141592654 double

104 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

hilim Upper limit of the sensor reading �3.141592654 double

tol Tolerance for the mid-point indicator �0.5 double

hys Hysteresis for the mid-point indicator double

RESR Flag for resetting the revolutions counter bool

off . . . Reset only the estimated position y

on Reset also the irev revolutions counter

105

ASW – Switch with automatic selection of input

Block Symbol Licence: ADVANCED

u1
u2
u3
u4
iSW

y

oSW

ASW

Function Description
The ASW block copies one of the inputs u1, . . . , u4 or one of the parameters p1, . . . , p4
to the output y. The appropriate input signal is copied to the output as long as the
input signal iSW belongs to the set {1, 2, 3, 4} and the parameters are copied when iSW

belongs to the set {−1,−2,−3,−4} (i.e. y = p1 for iSW = −1, y = u3 for iSW = 3 etc.).
If the iSW input signal differs from any of these values (i.e. iSW = 0 or iSW < −4 or
iSW > 4), the output is set to the value of input or parameter which has changed the
most recently. The signal or parameter is considered changed when it differs by more
than delta from its value at the moment of its last change (i.e. the changes are measured
integrally, not as a difference from the last sample). The following priority order is used
when changes occur simultaneously in more than one signal: p4, p3, p2, p1, u4, u3, u2,
u1. The identifier of input signal or parameter which is copied to the output y is always
available at the oSW output.

The ASW block has one special feature. The updated value of y is copied to all the
parameters p1, . . . , p4. This results in all external tools reading the same value y. This is
particularly useful in higher-level systems which use the set&follow method (e.g. a slider
in Iconics Genesis). This feature is not implemented in Simulink as there are no ways to
read the values of inputs by external programs.

ATTENTION! One of the inputs u1, . . . , u4 can be delayed by one step when the
block is contained in a loop. This might result in an illusion, that the priority is broken
(the oSW output then shows that the most recently changed signal is the delayed one).
In such a situation the LPBRK block(s) must be used in appropriate positions.

Inputs
u1..u4 Analog input signals to be selected from double

iSW Active signal or parameter selector long

Outputs
y The selected analog signal or parameter double

oSW Identifier of the selected signal or parameter long

106 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

Parameters
delta Threshold for detecting a change �0.000001 double

p1..p4 Parameters to be selected from double

107

AVG – Moving average filter

Block Symbol Licence: STANDARD

u y

AVG

Function Description
The AVG block computes a moving average from the last n samples according to the
formula

yk =
1

n
(uk + uk−1 + · · ·+ uk−n+1).

There is a limitation n < N , where N depends on the implementation.
If the last n samples are not yet known, the average is computed from the samples

available.

Input
u Input signal to be filtered double

Output
y Filtered output signal double

Parameter
n Number of samples to compute the average from ↓1 ↑10000000 �10 long

n Limit value of parameter n (used for internal memory allocation)
↓1 ↑10000000 �10

long

108 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

AVS – Motion control unit

Block Symbol Licence: ADVANCED

START
SET
am
dm
vm
sm

a
v
s
tt

RDY
BSY

AVS

Function Description
The AVS block generates time-optimal trajectory from initial steady position 0 to a final
steady position sm while respecting the constraints on the maximal acceleration am,
maximal deceleration dm and maximal velocity vm. When rising edge (off→on) occurs
at the SET input, the block is initialized for current values of the inputs am, dm, vm and
sm. The RDY output is set to offbefore the first initialization and during the initialization
phase, otherwise it is set to 1. When rising edge (off→on) occurs at the START input, the
block generates the trajectory at the outputs a, v, s and tt, where the signals correspond
to acceleration, velocity, position and time respectively. The BSY output is set to onwhile
the trajectory is being generated, otherwise it is off.

Inputs
START Starting signal (rising edge) bool

SET Initialize/compute the trajectory for the current inputs bool

am Maximal allowed acceleration [m/s2] double

dm Maximal allowed deceleration [m/s2] double

vm Maximum allowed velocity [m/s] double

sm Desired final position [m] (initial position is 0) double

Outputs
a Acceleration [m/s2] double

v Velocity [m/s] double

s Position [m] double

tt Time [s] double

RDY Flag indicating that the block is ready to generate the trajectory bool

BSY Flag indicating that the trajectory is being generated bool

109

BPF – Band-pass filter

Block Symbol Licence: STANDARD

u y

BPF

Function Description
The BPF implements a second order filter in the form

Fs =
2ξas

a2s2 + 2ξas+ 1
,

where a and ξ are are the block parameters fm and xi respectively. The fm parameter
defines the middle of the frequency transmission band and xi is the relative damping
coefficient.

If ISSF = on, then the state of the filter is set to the steady value at the block
initialization according to the input signal u.

Input
u Input signal to be filtered double

Output
y Filtered output signal double

Parameters
fm Peak frequency, middle of the frequency transmission band [Hz]

�1.0
double

xi Relative damping coefficient (recommended value 0.5 to 1) �0.707 double

ISSF Steady state at start-up flag bool

off . . . Zero initial state
on Initial steady state

110 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

CMP – Comparator with hysteresis

Block Symbol Licence: STANDARD

u1
u2 Y

CMP

Function Description
The CMP block compares the inputs u1 and u2 with the hysteresis h as follows:

Y−1 = 0,

Yk = hyst(ek), k = 0, 1, 2, . . .

where

ek = u1k − u2k

and

hyst(ek) =


0 for ek ≤ −h
Yk−1 for ek ∈ (−h, h)
1 for ek ≥ h (ek > h for h = 0)

The indexed variables refer to the values of the corresponding signal in the cycle defined
by the index, i.e. Yk−1 denotes the value of output in the previous cycle/step. The value
Y−1 is used only once when the block is initialized (k = 0) and the difference of the input
signals ek is within the hysteresis limits.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

Output
Y Logical output of the block bool

Parameter
hys Hysteresis �0.5 double

111

CNDR – Nonlinear conditioner

Block Symbol Licence: STANDARD

u y
is

CNDR

Function Description
The CNDR block can be used for compensation of complex nonlinearities by a piecewise
linear transformation which is depicted below.

It is important to note that in the case of u < u0 or u > un−1 the output depends on
the SATF parameter.

Input
u Analog input of the block double

Outputs
y Analog output of the block double

is Active sector of nonlinearity (see the figure above) long

Parameters
n Number of (u, y) node pairs �2 long

112 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SATF Saturation flag �on bool

off . . . Signal not limited on Saturation limits active
up Vector of increasing u-coordinates �[-1 1] double

yp Vector of y-coordinates �[-1 1] double

113

DEL – Delay with initialization

Block Symbol Licence: STANDARD

u
R1
y0

y

RDY

DEL

Function Description
The DEL block implements a delay of the input signal u. The signal is shifted n samples
backwards, i.e.

yk = uk−n.

If the last n samples are not yet known, the output is set to

yk = y0,

where y0 is the initialization input signal. This can happen after restarting the control
system or after resetting the block (R1: off→on→off) and it is indicated by the output
RDY = off.

Inputs
u Analog input of the block double

R1 Block reset bool

y0 Initial output value double

Outputs
y Delayed input signal double

RDY Ready flag indicating that the buffer is filled with the input signal
samples

bool

Parameter
n Delay [samples] (the resulting time delay is n · TS , where TS is the

block execution period) ↓0 ↑10000000 �10
long

nmax Limit for parameter del (used for internal memory alocation)
↓1 ↑10000000 �10

long

114 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

DELM – Time delay

Block Symbol Licence: STANDARD

u y

DELM

Function Description
The DELM block implements a time delay of the input signal. The length of the delay
is given by rounding the del parameter to the nearest integer multiple of the block
execution period. The output signal is y = 0 for the first del seconds after initialization.

Input
u Analog input of the block double

Output
y Delayed input signal double

Parameter
del Time delay [s] �1.0 double

nmax Size (number of samples) of delay buffer (used for internal memory
allocation) ↓1 ↑10000000 �10

long

115

DER – Derivation, filtering and prediction from the last n+1
samples

Block Symbol Licence: STANDARD

u
RUN
tp

y
z

RDY

DER

Function Description
The DER block interpolates the last n + 1 samples (n ≤ N − 1, N is implementation
dependent) of the input signal u by a line y = at + b using the least squares method.
The starting point of the time axis is set to the current sampling instant.

In case of RUN = on the outputs y and z are computed from the obtained parameters
a and b of the linear interpolation as follows:

Derivation: y = a
Filtering: z = b, for tp = 0
Prediction: z = atp + b, for tp > 0
Retrodiction: z = atp + b, for tp < 0

In case of RUN = off or n + 1 samples of the input signal are not yet available
(RDY = off), the outputs are set to y = 0, z = u.

Inputs
u Analog output of the block double

RUN Enable execution bool

off . . . tracking (z = u)
on filtering (y – estimate of the derivative, z – estimate of u

at time tp)
tp Time instant for prediction/filtering (tp = 0 corresponds with the

current sampling instant)
double

Outputs
y Estimate of input signal derivative double

z Predicted/filtered input signal double

RDY Ready flag (all n+ 1 samples are available) bool

116 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

Parameter
n Number of samples for interpolation (n+1 samples are used); 1 ≤ n ≤

nmax ↓1 ↑10000000 �10
long

nmax Limit value for parameter n (used for internal memory allocation)
↓1 ↑10000000 �10

long

117

EVAR – Moving mean value and standard deviation

Block Symbol Licence: STANDARD

u mu
si

EVAR

Function Description
The EVAR block estimates the mean value mu (µ) and standard deviation si (σ) from the
last n samples of the input signal u according to the formulas

µk =
1

n

n−1∑
i=0

uk−i

σk =

√√√√1

n

n−1∑
i=0

u2k−i − µ2
k

where k stands for the current sampling instant.

Input
u Analog input of the block double

Outputs
mu Mean value of the input signal double

si Standard deviation of the input signal double

Parameter
n Number of samples to estimate the statistical properties from

↓2 ↑10000000 �100
long

nmax Limit value of parameter n (used for internal memory allocation)
↓1 ↑10000000 �10

long

118 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

INTE – Controlled integrator

Block Symbol Licence: STANDARD

u
RUN
R1
y0
ti

y

Q

LY

HY

INTE

Function Description
The INTE block implements a controlled integrator with variable integral time constant
ti and two indicators of the output signal level (ymin a ymax). If RUN = on and R1 = off

then

y(t) =
1

Ti

∫ t

0
u(τ)dτ + C,

where C = y0. If RUN = off and R1 = off then the output y is frozen to the last value
before the falling edge at the RUN input signal. If R1 = on then the output y is set to the
initial value y0. The integration uses the trapezoidal method as follows

yk = yk−1 +
TS

2Ti
(uk + uk−1),

where TS is the block execution period.
Consider using the SINT block, whose simpler structure and functionality might be

sufficient for elementary tasks.

Inputs
u Analog input of the block double

RUN Enable execution bool

off . . . Integration stopped on Integration running
R1 Block reset, initialization of the integrator output to y0 bool

y0 Initial output value double

ti Integral time constant double

Outputs
y Integrator output double

Q Running integration indicator bool

LY Lower level indicator (y < ymin) bool

HY Upper level indicator (y > ymax) bool

119

Parameters
ymin Lower level definition �-1.0 double

ymax Upper level definition �1.0 double

120 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

KDER – Derivation and filtering of the input signal

Block Symbol Licence: ADVANCED

u

y
dy

d2y
d3y
d4y
d5y

KDER

Function Description
The KDER block is a Kalman-type filter of the norder-th order aimed at estimation of
derivatives of locally polynomial signals corrupted by noise. The order of derivatives
ranges from 0 to norder − 1. The block can be used for derivation of almost arbitrary
input signal u = u0(t) + v(t), assuming that the frequency spectrums of the signal and
noise differ.

The block is configured by only two parameters pbeta and norder. The pbeta pa-
rameter depends on the sampling period TS , frequency properties of the input signal u
and also the noise to signal ratio. An approximate formula pbeta ≈ TSω0 can be used.
The frequency spectrum of the input signal u should be located deep down below the
cutoff frequency ω0. But at the same time, the frequency spectrum of the noise should
be as far away from the cutoff frequency ω0 as possible. The cutoff frequency ω0 and
thus also the pbeta parameter must be lowered for strengthening the noise rejection.

The other parameter norder must be chosen with respect to the order of the estimated
derivations. In most cases the 2nd or 3rd order filter is sufficient. Higher orders of the
filter produce better derivation estimates for non-polynomial signals at the cost of slower
tracking and higher computational cost.

Input
u Input signal to be filtered double

Outputs
y Filtered input signal double

dy Estimated 1st order derivative double

d2y Estimated 2nd order derivative double

d3y Estimated 3rd order derivative double

d4y Estimated 4th order derivative double

d5y Estimated 5th order derivative double

121

Parameters
norder Order of the derivative filter ↓2 ↑10 �3 long

pbeta Bandwidth of the derivative filter ↓0.0 �0.1 double

122 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

LPF – Low-pass filter

Block Symbol Licence: STANDARD

u y

LPF

Function Description
The LPF block implements a second order filter in the form

Fs =
1

a2s2 + 2ξas+ 1
,

where

a =

√√
2
√

2ξ4 − 2ξ2 + 1− 2ξ2 + 1

2πfb

and fb and ξ = xi are the block parameters. The fb parameter defines the filter band-
width and xi is the relative damping coefficient. The recommended value is xi = 0.71
for the Butterworth filter and xi = 0.87 for the Bessel filter.

If ISSF = on, then the state of the filter is set to the steady value at the block
initialization according to the input signal u.

Input
u Input signal to be filtered double

Output
y Filtered output signal double

Parameters
fb Filter bandwidth [Hz]; the frequencies in the range 〈0, fb〉 pass

through the filter, the attenuation at the frequency fb is 3 dB and
approximately 40 dB at 10 · fb; it must hold fb < 1

10TS
for proper

function of the filter, where TS is the block execution period �1.0

double

xi Relative damping coefficient (recommended value 0.5 to 1) �0.707 double

ISSF Steady state at start-up bool

off . . . Zero initial state
on Initial steady state

123

MINMAX – Running minimum and maximum

Block Symbol Licence: STANDARD

u

R1

ymin
ymax
RDY

MINMAX

Function Description
The MINMAX function block evaluates minimum and maximum from the last n samples
of the u input signal. The output RDY = off indicates that the buffer contains less than
n samples. In such a case the minimum and maximum are found among the available
samples.

Inputs
u Analog input of the block double

R1 Block reset bool

Outputs
ymin Minimal value found double

ymax Maximal value found double

RDY Ready flag (buffer filled) bool

Parameter
n Number of samples for analysis (buffer length) ↓1 ↑10000000 �100 long

124 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

NSCL – Nonlinear scaling factor

Block Symbol Licence: STANDARD

u y

NSCL

Function Description
The NSCL block compensates common nonlinearities of the real world (e.g. the servo
valve nonlinearity) by using the formula

y = gain
u

ze+ (1− ze) · u
,

where gain and ze are the parameters of the block. The choice of ze within the interval
(0, 1) leads to concave transformation, while ze > 1 gives a convex transformation.

0 0.2 0.4 0.6 0.8 1
0

gain

input u

ou
tp

ut
 y

ze=1.2

ze=0.8

ze=1.0

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
gain Signal gain �1.0 double

ze Shaping parameter �1.0 double

125

RDFT – Running discrete Fourier transform

Block Symbol Licence: ADVANCED

u

HLD

amp
thd

vAmp
vPhi
vRe
vIm

E
iE

RDFT

Function Description
The RDFT function block analyzes the analog input signal using the discrete Fourier
transform with the fundamental frequency freq and optional higher harmonic frequen-
cies. The computations are performed over the last m samples of the input signal u, where
m = nper/freq/TS , i.e. from the time-window of the length equivalent to nper periods
of the fundamental frequency.

If nharm > 0 the number of monitored higher harmonic frequencies is given solely by
this parameter. On the contrary, for nharm = 0 the monitored frequencies are given by
the user-defined vector parameter freq2.

For each frequency the amplitude (vAmp output), phase-shift (vPhi output), real/cosine
part (vRe output) and imaginary/sine part (vIm output). The output signals have the
vector form, therefore the computed values for all the frequencies are contained within.
Use the VTOR function block to disassemble the vector signals.

Inputs
u Analog input of the block double

HLD Hold bool

Outputs
amp Amplitude of the fundamental frequency double

thd Total harmonic distortion (only for nharm ≥ 1) double

vAmp Vector of amplitudes at given frequencies reference

vPhi Vector of phase-shifts at given frequencies reference

vRe Vector of real parts at given frequencies reference

vIm Vector of imaginary parts at given frequencies reference

E Error flag bool

iE Error code error

i REX general error

126 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

Parameters
freq Fundamental frequency ↓0.000000001 ↑1000000000.0 �1.0 double

nper Number of periods to calculate upon ↓1 ↑10000 �10 long

nharm Number of monitored harmonic frequencies ↓0 ↑16 �3 long

ifrunit Frequency units ↓1 ↑2 �1 long

1 Hz
2 rad/s

iphunit Phase shift units ↓0 ↑2 �1 long

1 degrees
2 radians

freq2 Vector of user-defined monitored frequencies �[2.0 3.0 4.0] double

127

RLIM – Rate limiter

Block Symbol Licence: STANDARD

u y

RLIM

Function Description
The RLIM block copies the input signal u to the output y, but the maximum allowed rate
of change is limited. The limits are given by the time constants tp and tn:

the steepest rise per second: 1/tp
the steepest descent per second: −1/tn

Input
u Input signal to be filtered double

Output
y Filtered output signal double

Parameters
tp Time constant defining the maximum allowed rise �2.0 double

tn Time constant defining the maximum allowed descent (note that
tn > 0) �2.0

double

128 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

S1OF2 – One of two analog signals selector

Block Symbol Licence: ADVANCED

u1
u2
sv
HF1
HF2
R

y
E

E1
E2
iE1
iE2
W

S1OF2

Function Description
The S1OF2 block assesses the validity of two input signals u1 and u2 separately. The
validation method is equal to the method used in the SAI block. If the signal u1 (or u2)
is marked invalid, the output E1 (or E2) is set to on and the error code is sent to the iE1

(or iE2) output. The S1OF2 block also evaluates the difference between the two input
signals. The internal flag D is set to on if the differences |u1− u2| in the last nd samples
exceed the given limit, which is given by the following inequation

|u1− u2| > pdev
vmax− vmin

100
,

where vmin and vmax are the minimal and maximal limits of the inputs u1 and u2 and
pdev is the allowed percentage difference with respect to the overall range of the input
signals. The value of the output y depends on the validity of the input signals (flags E1

and E2) and the internal difference flag D as follows:

(i) If E1 = off and E2 = off and D = off , then the output y depends on the mode

parameter:

y =


u1+u2

2 , for mode = 1,
min(u1, u2), for mode = 2,
max(u1, u2), for mode = 3,

and the output E is set to off unless set to on earlier.

(ii) If E1 = off and E2 = off and D = on , then y = sv and E = on.

(iii) If E1 = on and E2 = off (E1 = off and E2 = on) , then y = u2 (y = u1) and the
output E is set to off unless set to on earlier.

(iv) If E1 = on and E2 = on , then y = sv and E = on.

The input R resets the inner error flags Fl–F4 (see the SAI block) and the D flag. For
the input R set permanently to on, the invalidity indicator E1 (E2) is set to on for only

129

one cycle period whenever some invalidity condition is fulfilled. On the other hand, for
R = 0, the output E1 (E2) is set to on and remains true until the reset (R: off→on). A
similar rule holds for the E output. For the input R set permanently to on, the E output
is set to on for only one cycle period whenever a rising edge occurs in the internal D flag
(D = off → on). On the other hand, for R = 0, the output E is set to on and remains
true until the reset (rising edge R: off→on). The output W is set to on only in the (iii)
or (iv) cases, i.e. at least one input signal is invalid.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

sv Substitute value for an error case, i.e. E = on double

HF1 Hardware error flag for signal u1 bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

HF2 Hardware error flag for signal u2 bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

R Reset inner error flags of the input signals u1 and u2 bool

Outputs
y Analog output of the block double

E Output signal invalidity indicator bool

off . . . Signal is valid on Signal is invalid
E1 Invalidity indicator for input u1 bool

off . . . Signal is valid on Signal is invalid, y = u2

E2 Invalidity indicator for input u2 bool

off . . . Signal is valid on Signal is invalid, y = u1

iE1 Reason of input u1 invalidity long

0 Signal valid
1 Signal out of range
2 Signal varies too little
3 Signal varies too little and signal out of range
4 Signal varies too much
5 Signal varies too much and signal out of range
6 Signal varies too much and too little
7 Signal varies too much and too little and signal out of

range
8 Hardware error

iE2 Reason of input u2 invalidity, see the iE1 output long

W Warning flag (invalid input signal) bool

off . . . Both input signals u1 and u2 are valid
on At least one of the input signals is invalid

130 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

Parameters
nb Number of samples which are not included in the validity assessment

of the signals u1 and u2 after initialization of the block �10
long

nc Number of samples for invariability testing (see the SAI block,
condition F2) �10

long

nbits Number of A/D converter bits (source of the signals u1 and u2)
�12

long

nr Number of samples for variability testing (see the SAI block, condition
F3) �10

long

prate Maximum allowed percentage change of the input u1 (u2) within the
last nr samples (with respect to the overall range of the input signals
vmax− vmin, see the SAI block) �10.0

double

nv Number of samples for out-of-range testing (see the SAI block,
condition F4) �1

long

vmin Lower limit for the input signals u1 and u2 �-1.0 double

vmax Upper limit for the input signals u1 and u2 �1.0 double

nd Number of samples for deviation testing (inner flag D; D is always off
for nd = 0) �5

long

pdev Maximum allowed percentage deviation of the inputs u1 and u2 with
respect to the overall range of the input signals vmax− vmin �10.0

double

mode Defines how to compute the output signal y when both input signals
are valid (E1 = off, E2 = off and D = off) �1

long

1 Average, y = u1+u2
2

2 Minimum, y = min(u1, u2)
3 Maximum, y = max(u1, u2)

131

SAI – Safety analog input

Block Symbol Licence: ADVANCED

u
sv
HWF
R

y
yf
E
iE

SAI

Function Description
The SAI block tests the input signal u and assesses its validity. The input signal u is
considered invalid (the output E = on) in the following cases:

F1: Hardware error. The input signal HWF = on.

F2: The input signal u varies too little. The last nc samples of the input u lies within
the interval of width du,

du =

〈 vmax−vmin
2nbits

, for nbits ∈ {8, 9, ..., 16}

0, for nbits /∈ {8, 9, ..., 16},

where vmin and vmax are the lower and upper limits of the input u, respectively,
and nbits is the number of A/D converter bits. The situation when the input
signal u varies too little is shown in the following picture:

If the parameter nc is set to nc = 0, the condition F2 is never fulfilled.

F3: The input signal u varies too much. The last nr samples of the input u filtered
by the SPIKE filter have a span which is greater than rate,

rate = prate
vmax− vmin

100
,

132 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

where prate defines the allowed percentage change in the input signal u within the
last nr samples (with respect to the overall range of the input signal u ∈ 〈vmin, vmax〉).
The block includes a SPIKE filter with fixed parameters mingap = vmax−vmin

100 and
q = 2 suppressing peaks in the input signal to avoid undesirable fulfilling of this
condition. See the SPIKE block description for more details. The situation when
the input signal u varies too much is shown in the following picture:

If the parameter nr is set to nr = 0, the condition F3 is never fulfilled.

F4: The input signal u is out of range. The last nv samples of the input signal u lie
out of the allowed range 〈vmin, vmax〉.

If the parameter nv is set to nv = 0, the condition F4 is never fulfilled.

The signal u is copied to the output y without any modification when it is considered
valid. In the other case, the output y is determined by a substitute value from the sv

input. In such a case the output E is set to on and the output iE provides the error code.
The input R resets the inner error flags F1–F4. For the input R set permanently to on,
the invalidity indicator E is set to on for only one cycle period whenever some invalidity
condition is fulfilled. On the other hand, for R = off, the output E is set to on and
remains true until the reset (rising edge R: off→on).

The table of error codes iE resulting from the inner error flags F1–F4:

F1 F2 F3 F4 iE

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 * * * 8

133

The nb parameter defines the number of samples which are not included in the validity
assessment after initialization of the block (restart). Recommended setting is nb ≥ 5 to
allow the SPIKE filter initial conditions to fade away.

Inputs
u Analog input of the block double

sv Substitute value to be used when the signal u is marked as invalid double

HWF Hardware error indicator bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

R Reset inner error flags F1–F4 bool

Outputs
y Analog output of the block double

yf Filtered analog output signal y, output of the SPIKE filter double

E Output signal invalidity indicator bool

off . . . Signal is valid
on Signal is invalid, y = yf =

sv

iE Reason of invalidity long

0 Signal valid
1 Signal out of range
2 Signal varies too little
3 Signal varies too little and signal out of range
4 Signal varies too much
5 Signal varies too much and signal out of range
6 Signal varies too much and too little
7 Signal varies too much and too little and signal out of

range
8 Hardware error

Parameters
nb Number of samples which are not included in the validity assessment

of the signal u after initialization of the block �10
long

nc Number of samples for invariability testing (the F2 condition) �10 long

nbits Number of A/D converter bits �12 long

nr Number of samples for variability testing (the F3 condition) �10 long

prate Maximum allowed percentage change of the input u within the last
nr samples (with respect to the overall range of the input signal
vmax− vmin) �10.0

double

nv Number of samples for out-of-range testing (the F4 condition) �1 long

vmin Lower limit for the input signal u �-1.0 double

vmax Upper limit for the input signal u �1.0 double

134 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SEL – Analog signal selector

Block Symbol Licence: STANDARD

u1
u2
u3
u4
iSW
SW1
SW2

y

SEL

Function Description
The SEL block is obsolete, replace it by the SELQUAD block. Note the difference in binary
selector signals SWn.

The SEL block selects one of the four input signals u1, u2, u3 and u4 and copies it to
the output signal y. The selection is based on the iSW input or the binary inputs SW1 and
SW2. These two modes are distinguished by the BINF binary flag. The signal is selected
according to the following table:

iSW SW1 SW2 y

0 off off u1

1 off on u2

2 on off u3

3 on on u4

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

u3 Third analog input of the block double

u4 Fourth analog input of the block double

iSW Active signal selector, active when BINF = off long

SW1 Binary signal selector, active when BINF = on bool

SW2 Binary signal selector, active when BINF = on bool

Output
y The selected signal double

135

Parameter
BINF Enable the binary selectors bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

136 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SELQUAD, SELOCT, SELHEXD – Analog signal selectors

Block Symbols Licence: STANDARD

u0
u1
u2
u3
iSW
SW0
SW1

y

SELQUAD

u0
u1
u2
u3
u4
u5
u6
u7
iSW
SW0
SW1
SW2

y

SELOCT

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
iSW
SW0
SW1
SW2
SW3

y

SELHEXD

Function Description
The SELQUAD, SELOCT and SELHEX blocks select one of the input signals and copy it to
the output signal y. The selection of the active signal u0. . . u15 is based on the iSW input
or the binary inputs SW0. . . SW3. These two modes are distinguished by the BINF binary
flag. The signal is selected according to the following table:

iSW SW0 SW1 SW2 SW3 y

0 off off off off u0

1 on off off off u1

2 off on off off u2

3 on on off off u3

4 off off on off u4

5 on off on off u5

6 off on on off u6

7 on on on off u7

8 off off off on u8

9 on off off on u9

10 off on off on u10

11 on on off on u11

12 off off on on u12

13 on off on on u13

14 off on on on u14

15 on on on on u15

137

Please note that the only difference among the blocks is the number of inputs.

Inputs
u0..15 Analog inputs of the block double

iSW Active signal selector long

SW0..3 Binary signal selectors bool

Output
y The selected input signal double

Parameter
BINF Enable the binary selectors bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

138 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SHIFTOCT – Data shift register

Block Symbol Licence: STANDARD

u

RUN

y0
y1
y2
y3
y4
y5
y6
y7

SHIFTOCT

Function Description

The SHIFTOCT block works as a shift register with eight outputs of arbitrary data
type.

If the RUN input is active, the following assignment is performed with each algorithm
tick:

yi = yi−1, i = 1..7

y0 = u

Thus the value on each output y0 to y6 is shifted to the following output and the
value on input u is assigned to output y0.

The block works with any data type of signal connected to the input u. Data type
has to be specified by the vtype parameter. Outputs y0 to y8 then have the same data
type.

If you need a triggered shift register, place the EDGE_ block in front of the RUN input.

Inputs
u Data input of the register unknown

RUN Enables outputs shift bool

Outputs
y0 First output of the block unknown

y1 Second output of the block unknown

y2 Third output of the block unknown

y3 Fourth output of the block unknown

y4 Fifth output of the block unknown

y5 Sixth output of the block unknown

y6 Seventh output of the block unknown

139

y7 Eighth output of the block unknown

Parameters
vtype Output data type �8 long

1 Bool
2 Byte
3 Short
4 Long
5 Word
6 DWord
7 Float
8 Double
–-
10 Large

140 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SHLD – Sample and hold

Block Symbol Licence: STANDARD

u
SETH
R1

y

SHLD

Function Description
The SHLD block is intended for holding the value of the input signal. It processes the
input signal according to the mode parameter.

In Triggered sampling mode the block sets the output signal y to the value of the
input signal u when rising edge (off→on) occurs at the SETH input. The output is held
constant unless a new rising edge occurs at the SETH input.

If Hold last value mode is selected, the output signal y is set to the last value of the
input signal u before the rising edge at the SETH input occured. It is kept constant as
long as SETH = on. For SETH = off the input signal u is simply copied to the output y.

In Hold current value mode the u input is sampled right when the rising edge
(off→on) occurs at the SETH input. It is kept constant as long as SETH = on. For
SETH = off the input signal u is simply copied to the output y.

The binary input R1 sets the output y to the value y0, it overpowers the SETH input
signal.

Inputs
u Analog input of the block double

SETH Trigger for the set and hold operation bool

R1 Block reset, R1 = on → y = y0 bool

Output
y Analog output of the block double

Parameter
y0 Initial output value double

mode Sampling mode �3 long

1 Triggered sampling
2 Hold last value
3 Hold current value

141

SINT – Simple integrator

Block Symbol Licence: STANDARD

u y

SINT

Function Description
The SINT block implements a discrete integrator described by the following difference
equation

yk = yk−1 +
TS

2Ti
(uk + uk−1),

where TS is the block execution period and Ti is the integral time constant. If yk falls out
of the saturation limits ymin and ymax, the output and state of the block are appropriately
modified.

For more complex tasks, consider using the INTE block, which provides extended
functionality.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
ti Integral time constant Ti �1.0 double

y0 Initial output value double

ymax Upper limit of the output signal �1.0 double

ymin Lower limit of the output signal �-1.0 double

142 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SPIKE – Spike filter

Block Symbol Licence: ADVANCED

u y

SPIKE

Function Description
The SPIKE block implements a nonlinear filter for suppressing isolated peaks (pulses) in
the input signal u. One cycle of the SPIKE filter performs the following transformation
(u, y) → y:

delta := y - u;

if abs(delta) < gap

then

begin

y := u;

gap := gap/q;

ifgap < mingap then gap:= mingap;

end

else

begin

if delta < 0

then y := y + gap

else y := y - gap;

gap := gap * q;

end

where mingap and q are the block parameters.
The signal passes through the filter unaffected for sufficiently large mingap parameter,

which defines the minimal size of the tolerance window. By lowering this parameter it
is possible to find an appropriate value, which leads to suppression of the undesirable
peaks but leaves the input signal intact otherwise. The recommended value is 1 % of
the overall input signal range. The q parameter determines the adaptation speed of the
tolerance window.

Input
u Input signal to be filtered double

143

Output
y Filtered output signal double

Parameters
mingap Minimum size of the tolerance window �0.01 double

q Tolerance window adaptation speed ↓1.0 �2.0 double

144 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

SSW – Simple switch

Block Symbol Licence: STANDARD

u1
u2
SW

y

SSW

Function Description
The SSW block selects one of two input signals u1 and u2 with respect to the binary input
SW. The selected input is copied to the output y. If SW = off (SW = on), then the selected
signal is u1 (u2).

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

SW Signal selector bool

off . . . The u1 signal is selected, y = u1

on The u2 signal is selected, y = u2

Output
y Analog output of the block double

145

SWR – Selector with ramp

Block Symbol Licence: STANDARD

u1
u2
SW

y

SWR

Function Description
The SWR block selects one of two input signals u1 and u2 with respect to the binary
input SW. The selected input is copied to the output y. If SW = off (SW = on), then
the selected signal is u1 (u2). The output signal is not set immediately to the value of
the selected input signal but tracks the selected input with given rate constraint (i.e. it
follows a ramp). This rate constraint is configured independently for each input u1, u2
and is defined by time constants t1 and t2. As soon as the output reaches the level of
the selected input signal, the rate limiter is disabled and remains inactive until the next
signal switching.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

SW Signal selector bool

off . . . The u1 signal is selected
on The u2 signal is selected

Parameters
t1 Rate limiter time constant for switching from u2 to u1 �1.0 double

t2 Rate limiter time constant for switching from u1 to u2 �1.0 double

y0 Initial output value to start the tracking from (before the first
switching of signals occurs)

double

Output
y Analog output of the block double

146 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

VDEL – Variable time delay

Block Symbol Licence: STANDARD

u
d y

VDEL

Function Description
The VDEL block delays the input signal u by the time defined by the input signal d.
More precisely, the delay is given by rounding the input signal d to the nearest integer
multiple of the block execution period (n · TS). A substitute value y0 is used until n
previous samples are available after the block initialization.

Inputs
u Analog input of the block double

d Time delay [s] double

Output
y Delayed input signal double

Parameter
y0 Initial/substitute output value double

nmax Size (number of samples) of delay buffer (used for internal memory
allocation) ↓1 ↑10000000 �10

long

147

ZV4IS – Zero vibration input shaper

Block Symbol Licence: ADVANCED

u y
E

ZV4IS

Function Description
The function block ZV4IS implements a band-stop frequency filter. The main field of
application is in motion control of flexible systems where the low stiffness of mechanical
construction causes an excitation of residual vibrations which can be observed in form
of mechanical oscillations. Such vibration can cause significant deterioration of quality
of control or even instability of control loops. They often lead to increased wear of
mechanical components. Generally, the filter can be used in arbitrary application for a
purpose of control of an oscillatory system or in signal processing for selective suppression
of particular frequency.

The input shaping filter can be used in two different ways. By using an open loop
connection, the input reference signal for an feedback loop coming from human operator
or higher level of control structure is properly shaped in order to attenuate any unwanted
oscillations. The internal dynamics of the filter does not influence a behaviour of the infe-
rior loop. The only condition is correct tuning of feedback compensator C(s), which has
to work in linear mode. Otherwise, the frequency spectrum of the manipulating variable
gets corrupted and unwanted oscillations can still be excited in a plant P (s). The main
disadvantage is passive vibration damping which works only in reference signal path.
In case of any external disturbances acting on the plant, the vibrations may still arise.
The second possible way of use is feedback connection. The input shaper is placed on the
output side of feedback compensator C(s) and modifies the manipulating variable acting
on the plant. An additional dynamics of the filter is introduced and the compensator
C(s) needs to be properly tuned.

The algorithm of input shaper can be described in time domain

y(t) = A1u(t− t1) +A2u(t− t2) +A3u(t− t3) +A4u(t− t4)

148 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

Thus, the filter has a structure of sum of weighted time delays of an input signal. The
gains A1..A4 and time delay values t1..t4 depend on a choice of filter type, natural
frequency and damping of controlled oscillatory mode of the system. The main advantage
of this structure compared to commonly used notch filters is finite impulse response
(which is especially important in motion control applications), warranted stability and
monotone step response of the filter and generally lower dynamic delay introduced into
a signal path.

For correct function of the filter, natural frequency omega and damping xi of the
oscillatory mode need to be set. The parameter ipar sets a filter type. For ipar = 1, one
of ten basic filter types chosen by istype is used. Particular basic filters differ in shape
and width of stop band in frequency domain. In case of precise knowledge of natural
frequency and damping, the ZV (Zero Vibration) or ZVD filters can be used, because
their response to input signal is faster compared to the other filters. In case of large
uncertainty in system/signal model, robust UEI (Extra Insensitive) or UTHEI filters
are good choice. Their advantage is wider stopband at the cost of slower response. The
number on the end of the name has the meaning of maximum allowed level of excited
vibrations for the given omega and xi (one, two or five percent).

For precise tuning of the filter, complete parameterization ipar = 2 can be selected.
For this choice, three parameters p_alpha,p_a2 and p_a3 which affect the shape of the
filter frequency response can freely be assigned. These parameters can be used for finding
of optimal compromise between robustness of the filter and introduced dynamical delay.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Input frequency ω [rad]

F
ilt

er
 a

m
pl

itu
de

 r
es

po
ns

e
A

(jω
)

ω
d
=

p
1
=0.2 p

1
=0.3p

1
=−0.1 p

1
=0.1

p
1
=−0.2

p
1
=−0.3

The asymmetry parameter p_alpha determines relative location of the stopband of
filter frequency response with respect to chosen natural frequency. Positive values mean
a shift to higher frequency range, negative values to lower frequency range, zero value
leads to symmetrical shape of the characteristic (see the figure above). The parameter
p_alpha also affects the overall filter length, thus the overall delay introduced into a
signal path. Lower values result in slower filters and higher delay. Asymmetric filters can
be used in cases where a lower or higher bound of the uncertainty in natural frequency
parameter is known.

149

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Input frequency ω [rad]

F
ilt

er
 a

m
pl

itu
de

 r
es

po
ns

e
A

(jω
)

p
2
=0.1

p
2
=0.2

p
2
=0.3

p
2
=0.4

p
2
=0.5

ω
d
=

Insensitivity parameter p_a2 determines the width and attenuation level of the filter
stopband. Higher values result in wider stopband and higher attenuation. For most ap-
plications, the value p_a2 = 0.5 is recommended for highest achievable robustness with
respect to modeling errors.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Input frequency ω [rad]

F
ilt

er
 a

m
pl

itu
de

 r
es

po
ns

e
A

(jω
)

p
2
=0.4

p
2
=0.6

p
2
=0.7

p
2
=0.75

p
2
=0.8

p
3
=p

2

ω
d
=

The additional parameter p_a3 needs to be chosen for symmetrical filters (p_alpha =
0). A rule for the most of the practical applications is to chose equal values p_a2 =
p_a3 from interval < 0, 0.75 >. Overall filter length is constant for this choice and only
the shape of filter stopband is affected. Lower values lead to robust shapers with wide
stopband and frequency response shape similar to standard THEI (Two-hump extra
insensitive) filters. Higher values lead to narrow stopband and synchronous drop of two
stopband peaks. The choice p_a2 = p_a3 = 0.75 results in standard ZVDD filter with
maximally flat and symmetric stopband shape. The proposed scheme can be used for
systematic tuning of the filter.

Input
u Input signal to be filtered double

150 CHAPTER 5. ANALOG – ANALOG SIGNAL PROCESSING

Outputs
y Filtered output signal double

E Error flag bool

off . . . No error on An error occurred

Parameters
omega Natural frequency �1.0 double

xi Relative damping coefficient double

ipar Specification �1 long

1 Basic types of IS
2 Complete parametrization

istype Type �2 long

1 ZV
2 ZVD
3 ZVDD
4 MISZV
5 UEI1
6 UEI2
7 UEI5
8 UTHEI1
9 UTHEI2
10 UTHEI5

p_alpha Shaper duration/assymetry parameter �0.2 double

p_a2 Insensitivity parameter �0.5 double

p_a3 Additional parameter (only for p_alpha = 0) �0.5 double

nmax Size (number of samples) of delay buffer (used for internal memory
allocation) ↓1 ↑10000000 �10

long

Chapter 6

GEN – Signal generators

Contents
ANLS – Controlled generator of piecewise linear function 152
BINS – Controlled binary sequence generator 154
BIS – Binary sequence generator 156
MP – Manual pulse generator . 157
PRBS – Pseudo-random binary sequence generator 158
SG, SGI – Signal generators . 160

151

152 CHAPTER 6. GEN – SIGNAL GENERATORS

ANLS – Controlled generator of piecewise linear function

Block Symbol Licence: STANDARD

RUN y
is

ANLS

Function Description
The ANLS block generates a piecewise linear function of time given by nodes t1,y1;
t2,y2; t3,y3; t4,y4. The initial value of output y is defined by the y0 parameter. The
generation of the function starts when a rising edge occurs at the RUN input (and the
internal timer is set to 0). The output y is then given by

y = yi +
yi+1 − yi
ti+1 − ti

(t− ti)

within the time intervals 〈ti, ti+1〉, i = 0, . . . , 3, t0 = 0.
To generate a step change in the output signal, it is necessary to to define two nodes

in the same time instant (i.e. ti = ti+1). The generation ends when time t4 is reached or
when time ti is reached and the following node precedes the active one (i.e. ti+1 < ti).
The output holds its final value afterwards. But for the RPT parameter set to on, instead
of holding the final value, the block returns to its initial state y0, the internal block timer
is set to 0 and the sequence is generated repeatedly. This can be used to generate square
or sawtooth functions. The generation can also be prematurely terminated by the RUN

input signal set to off. In that case the block returns to its initial state y0, the internal
block timer is set to 0 and is = 0 becomes the active time interval.

Input
RUN Enable execution, run the analog sequence generation bool

Outputs
y Analog output of the block double

is Index of the active time interval long

Parameters
y0 Initial output value double

t1 Node 1 time �1.0 double

y1 Node 1 value double

t2 Node 2 time �1.0 double

153

y2 Node 2 value �1.0 double

t3 Node 3 time �2.0 double

y3 Node 3 value �1.0 double

t4 Node 4 time �2.0 double

y4 Node 4 value double

RPT Repeating sequence bool

off . . . Disabled
on Enabled

154 CHAPTER 6. GEN – SIGNAL GENERATORS

BINS – Controlled binary sequence generator

Block Symbol Licence: STANDARD

START Y
is

BINS

Function Description
The BINS block generates a binary sequence at the Y output similarly to the BIS block.
The binary sequence is given by the block parameters. The initial value of the output
is given by the Y0 parameter. The difference between BINS and BIS blocks is that the
internal timer of the BINS block is set to 0 and the output Y is set to Y0 whenever a
rising edge occurs at the START input (even when a binary sequence is being generated).
The output value is inverted at time instants t1, t2, . . ., t8 (off→on, on→off). The
last switching of the output occurs at time ti, where ti+1 < ti and the output holds its
value afterwards. But for the RPT parameter set to on, instead of switching the output
for the last time, the block returns to its initial state, the internal block timer is set to
0 and the binary sequence is generated repeatedly. On the contrary to the BIS block the
changes in parameters t1. . . t8 are accepted only when rising edge occurs at the START

input.
The switching times are internally rounded to the nearest integer multiple of the

execution period, which may result in e.g. disappearing of very thin pulses (< TS/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

Input
START Starting signal (rising edge) bool

Outputs
Y Logical output of the block bool

is Index of the active time interval long

Parameters
Y0 Initial output value bool

off . . . Disabled/false on Enabled/true
t1 Switching time 1 [s] �1.0 double

t2 Switching time 2 [s] �2.0 double

t3 Switching time 3 [s] �3.0 double

155

t4 Switching time 4 [s] �4.0 double

t5 Switching time 5 [s] �5.0 double

t6 Switching time 6 [s] �6.0 double

t7 Switching time 7 [s] �7.0 double

t8 Switching time 8 [s] �8.0 double

RPT Repeating sequence bool

off . . . Disabled on Enabled

156 CHAPTER 6. GEN – SIGNAL GENERATORS

BIS – Binary sequence generator

Block Symbol Licence: STANDARD

Y
is

BIS

Function Description
The BIS block generates a binary sequence at the Y output. The sequence is given by
the block parameters. The initial value of the output is given by the Y0 parameter, the
internal timer of the block is set to 0 when the block initializes. The output value is
inverted at time instants t1, t2, . . ., t8 (off→on, on→off). The last switching of the
output occurs at time ti, where ti+1 < ti and the output then holds its value. But for
the RPT parameter set to on, instead of switching the output for the last time, the block
returns to its initial state, the internal block timer is set to 0 and the binary sequence is
generated repeatedly.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< TS/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

Outputs
Y Logical output of the block bool

is Index of the active time interval long

Parameters
Y0 Initial output value bool

off . . . Disabled/false on Enabled/true
t1 Switching time 1 [s] �1.0 double

t2 Switching time 2 [s] �2.0 double

t3 Switching time 3 [s] �3.0 double

t4 Switching time 4 [s] �4.0 double

t5 Switching time 5 [s] �5.0 double

t6 Switching time 6 [s] �6.0 double

t7 Switching time 7 [s] �7.0 double

t8 Switching time 8 [s] �8.0 double

RPT Repeating sequence bool

off . . . Disabled on Enabled

157

MP – Manual pulse generator

Block Symbol Licence: STANDARD

Y

MP

Function Description
The MP block generates a pulse of width pwidth when a rising edge occurs at the BSTATE

parameter (off→on). The algorithm immediately reverts the BSTATE parameter back to
off (BSTATE stands for a shortly pressed button). If repetition is enabled (RPTF = on),
it is possible to extend the pulse by repeated setting the BSTATE parameter to on. When
repetition is disabled, the parameter BSTATE is not taken into account during generation
of a pulse, i.e. the output pulses have always the specified width of pwidth.

The MP block reacts only to rising edge of the BSTATE parameter, therefore it cannot
be used for generating a pulse immediately at the start of the REX Control System
executive. Use the BIS block for such a purpose.

Output
Y Logical output of the block bool

Parameters
pwidth Pulse width [s] �1.0 double

BSTATE Output pulse activation bool

off . . . No action
on Generate output pulse

RPTF Allow pulse extension bool

off . . . Disabled
on Enabled

158 CHAPTER 6. GEN – SIGNAL GENERATORS

PRBS – Pseudo-random binary sequence generator

Block Symbol Licence: STANDARD

START
BRK

y
BSY

PRBS

Function Description
The PRBS block generates a pseudo-random binary sequence. The figure below displays
how the sequence is generated.

The initial and final values of the sequence are val0. The sequence starts from this
value when rising edge occurs at the START input (off→on), the output y is immediately
switched to the valhi value. The generator then switches the output to the other limit
value with the period of swper seconds and the probability of switching swprob. After
seqt seconds the output is set back to val0. A waitt-second period follows to allow
the settling of the controlled system response. Only then it is possible to start a new
sequence. It is possible to terminate the sequence prematurely by the BRK = on input
when necessary.

Inputs
START Starting signal (rising edge) bool

BRK Termination signal bool

Outputs
y Generated pseudo-random binary sequence double

BSY Busy flag bool

Parameters
val0 Initial and final value double

159

valhi Upper level of the y output �1.0 double

vallo Lower level of the y output �-1.0 double

swper Period of random output switching [s] �1.0 double

swprob Probability of switching ↓0.0 ↑1.0 �0.2 double

seqt Length of the sequence [s] �10.0 double

waitt Settling period [s] �2.0 double

160 CHAPTER 6. GEN – SIGNAL GENERATORS

SG, SGI – Signal generators

Block Symbols Licence: STANDARD

y

SG

RUN
SYN y

SGI

Function Description
The SG and SGI blocks generate periodic signals of chosen type (isig parameter): sine
wave, square, sawtooth and white noise with uniform distribution. The amplitude and
frequency of the output signal y are given by the amp and freq parameter respectively.
The output y can have a phase shift of phase ∈ (0, 2π) in the deterministic signals
(isig ∈ {1, 2, 3}).

The SGI block allows synchronization of multiple generators using the RUN and SYN

inputs. The RUN parameter must be set to on to enable the generator, the SYN input
synchronizes the generators during the output signal generation.

Inputs
RUN Enable execution, run the binary sequence generation bool

SYN Synchronization signal bool

Output
y Analog output of the block double

Parameters
isig Generated signal type �1 long

1 Sine wave
2 Symmetrical rectangular signal
3 Sawtooth signal
4 White noise with uniform distribution

amp Amplitude of the generated signal �1.0 double

freq Frequency of the generated signal �1.0 double

phase Phase shift of the generated signal double

offset Value added to the generated signal �1.0 double

ifrunit Frequency units �1 long

1 Hz
2 rad/s

161

iphunit Phase shift units �1 long

1 degrees
2 radians

162 CHAPTER 6. GEN – SIGNAL GENERATORS

Chapter 7

REG – Function blocks for control

Contents
ARLY – Advance relay . 165
FLCU – Fuzzy logic controller unit 166
FRID – ∗ Frequency response identification 169
I3PM – Identification of a three parameter model 171
LC – Lead compensator . 173
LLC – Lead-lag compensator . 174
MCU – Manual control unit . 175
PIDAT – PID controller with relay autotuner 177
PIDE – PID controller with defined static error 180
PIDGS – PID controller with gain scheduling 182
PIDMA – PID controller with moment autotuner 184
PIDU – PID controller unit . 190
PIDUI – PID controller unit with variable parameters 193
POUT – Pulse output . 195
PRGM – Setpoint programmer . 196
PSMPC – Pulse-step model predictive controller 198
PWM – Pulse width modulation . 202
RLY – Relay with hysteresis . 204
SAT – Saturation with variable limits 205
SC2FA – State controller for 2nd order system with frequency
autotuner . 207
SCU – Step controller with position feedback 213
SCUV – Step controller unit with velocity input 216
SELU – Controller selector unit . 220
SMHCC – Sliding mode heating/cooling controller 222
SMHCCA – Sliding mode heating/cooling controller with autotuner 226
SWU – Switch unit . 233

163

164 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

TSE – Three-state element . 234

165

ARLY – Advance relay

Block Symbol Licence: STANDARD

u y

ARLY

Function Description
The ARLY block is a modification of the RLY block, which allows lowering the amplitude of
steady state oscillations in relay feedback control loops. The block transforms the input
signal u to the output signal y according to the diagram below.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
ep Value for switching the output to the "On" state �-1.0 double

en Value for switching the output to the "Off" state �1.0 double

tol Tolerance limit for the superposed noise of the input signal u
↓0.0 �0.5

double

ap Value of the y output in the "On" state �1.0 double

an Value of the y output in the "Off" state �-1.0 double

y0 Initial output value double

166 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

FLCU – Fuzzy logic controller unit

Block Symbol Licence: ADVANCED

u

v

y
ir

wr

FLCU

Function Description
The FLCU block implements a simple fuzzy logic controller with two inputs and one
output. Introduction to fuzzy logic problems can be found in [4].

The output is defined by trapezoidal membership functions of linguistic terms of the
u and v inputs, impulse membership functions of linguistic terms of the y output and
inference rules in the form

If (u is Ui) AND (v is Vj), then (y is Yk),

where Ui, i = 1, . . . , nu are the linguistic terms of the u input; Vj , j = 1, . . . , nv are the
linguistic terms of the v input and Yk, k = 1, . . . , ny are the linguistic terms of the y

output. Trapezoidal (triangular) membership functions of the u and v inputs are defined
by four numbers as depicted below.

Not all numbers x1, . . . , x4 are mutually different in triangular functions. The matri-
ces of membership functions of the u and v input are composed of rows [x1, x2, x3, x4].
The dimensions of matrices mfu and mfv are (nu× 4) and (nv× 4) respectively.

The impulse 1st order membership functions of the y output are defined by the triplet

yk, ak, bk,

where yk is the value assigned to the linguistic term Yk, k = 1, . . . , ny in the case of
ak = bk = 0. If ak 6= 0 and bk 6= 0, then the term Yk is assigned the value of yk+aku+bkv.
The output membership function matrix sty has a dimension of (ny × 3) and contains
the rows [yk, ak, bk], k = 1, . . . , ny.

The set of inference rules is also a matrix whose rows are [il, jl, kl, wl], l = 1, . . . , nr,
where il, jl and kl defines a particular linguistic term of the u and v inputs and y output

167

respectively. The number wl defines the weight of the rule in percents wl ∈ {0, 1, . . . , 100}.
It is possible to suppress or emphasize a particular inference rule if necessary.

168 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

Inputs
u First analog input of the block double

v Second analog input of the block double

Outputs
y Analog output of the block double

ir Dominant rule long

wr Degree of truth of the dominant rule double

Parameters
umax Upper limit of the u input �1.0 double

umin Lower limit of the u input �-1.0 double

nu Number of membership functions of the input u ↓1 ↑25 �3 long

vmax Upper limit of the v input �1.0 double

vmin Lower limit of the v input �-1.0 double

nv Number of membership functions of the input v ↓1 ↑25 �3 long

ny Number of membership functions of the output y ↓1 ↑100 �3 long

nr Number of inference rules ↓1 ↑25 �3 long

mfu Matrix of membership functions of the input u
�[-1 -1 -1 0; -1 0 0 1; 0 1 1 1]

double

mfv Matrix of membership functions of the input v
�[-1 -1 -1 0; -1 0 0 1; 0 1 1 1]

double

sty Matrix of membership functions of the output y
�[-1 0 0; 0 0 0; 1 0 0]

double

rls Matrix of inference rules �[1 2 3 100; 1 1 1 100; 1 0 3 100] byte

169

FRID – ∗ Frequency response identification

Block Symbol Licence: ADVANCED

dv

pv

ID

HLD

BRK

mv
SAT

IDBSY
w

xres
xims
xrem
ximm

epv
IDE
iIDE

A0
A1
A2
A3
A4
A5

THD
DAV

FRID

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
dv Feedforward control variable double

pv Process variable double

ID Start the tuning experiment bool

HLD Hold bool

BRK Stop the tuning experiment bool

Parameters
ubias Static component of the exciting signal double

uamp Amplitude of the exciting signal �1.0 double

wb Frequency interval lower limit [rad/s] �1.0 double

wf Frequency interval higher limit [rad/s] �10.0 double

isweep Frequency sweeping mode �1 long

1 Logarithmic
2 Linear

cp Sweeping Rate �0.995 double

iavg Number of values for averaging �10 long

170 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

obw Observer bandwith �2 long

1 LOW
2 NORMAL
3 HIGH

stime Settling period [s] �10.0 double

umax Maximum generator amplitude �1.0 double

thdmin Minimum demanded THD treshold �0.1 double

adapt_rc Maximum rate of amplitude variation �0.001 double

pv_max Maximum desired process value �1.0 double

pv_sat Maximum allowed process value �2.0 double

ADAPT_EN Enable automatic amplitude adaptation �on bool

immode Mesurement mode �1 long

1 Manual specification of frequency points
2 Linear series of nmw points in the interval <wb;wf>
3 Logarithmic series of nmw points in the interval <wb;wf>
4 Automatic detection of important frequencies (N/A)

nwm Number of frequency response point for automatic mode long

wm Frequency measurement points for manual meas. mode [array of rad/s]
�[2.0 4.0 6.0 8.0]

double

Outputs
mv Manipulated variable (controller output) double

SAT Saturation flag bool

IDBSY Tuner busy flag bool

w Actual frequency [rad/s] double

xres real part of frequency response (sweeping) double

xims imaginary part of frequency response (sweeping) double

xrem real part of frequency response (measurement) double

ximm imaginary part of frequency response (measurement) double

epv Estimated process value double

IDE Error indicator bool

iIDE Error code long

A0 Estimated DC value double

A1 Estimated 1st harmonics amlitude double

A2 Estimated 2nd harmonics amlitude double

A3 Estimated 3rd harmonics amlitude double

A4 Estimated 4th harmonics amlitude double

A5 Estimated 5th harmonics amlitude double

THD Total harmonic distorsion double

DAV Data Valid bool

171

I3PM – Identification of a three parameter model

Block Symbol Licence: ADVANCED

u

y

u0

y0

RUN

CLR

ips

p1
p2
p3
p4
p5
p6
p7
p8

BSY
RDY

E
iE

I3PM

Function Description
The I3PM block is based on the generalized moment identification method. It provides a
three parameter model of the system.

Inputs
u Input of the identified system double

y Output of the identified system double

u0 Input steady state double

y0 Output steady state double

RUN Execute identification bool

CLR Block reset bool

ips Meaning of the output signals long

0 FOPDT model
p1 . . . gain
p2 . . . time delay
p3 . . . time constant

1 moments of input and output
p1 . . . parameter mu0
p2 . . . parameter mu1
p3 . . . parameter mu2
p4 . . . parameter my0
p5 . . . parameter my1
p6 . . . parameter my2

2 process moments
p1 . . . parameter mp0
p2 . . . parameter mp1
p3 . . . parameter mp2

172 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

3 characteristic numbers
p1 . . . parameter κ
p2 . . . parameter µ
p3 . . . parameter σ2

p4 . . . parameter σ

Outputs
pi Identified parameters with respect to ips, i = 1, . . . , 8 double

BSY Busy flag bool

RDY Ready flag bool

E Error flag bool

iE Error code long

1 Premature termination (RUN = off)
2 mu0 = 0
3 mp0 = 0
4 σ2 < 0

Parameters
tident Duration of identification [s] �100.0 double

irtype Controller type (control law) �6 long

1 D
2 I

3 ID
4 P

5 PD
6 PI

7 PID

ispeed Desired closed loop speed �2 long

1 Slow closed loop
2 Normal (middle fast) closed loop
3 Fast closed loop

173

LC – Lead compensator

Block Symbol Licence: STANDARD

u y

LC

Function Description
The LC block is a discrete simulator of derivative element

C(s) =
td ∗ s

td
nd

∗ s+ 1
,

where td is the derivative constant and nd determines the influence of parasite 1st order
filter. It is recommended to use 2 ≤ nd ≤ 10. If ISSF = on, then the state of the parasite
filter is set to the steady value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the C(s)
transfer function.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
td Derivative time constant �1.0 double

nd Derivative filtering parameter �10.0 double

ISSF Steady state at start-up bool

off . . . Zero initial state
on Initial steady state

174 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

LLC – Lead-lag compensator

Block Symbol Licence: STANDARD

u y

LLC

Function Description
The LLC block is a discrete simulator of integral-derivative element

C(s) =
a ∗ tau ∗ s+ 1

tau ∗ s+ 1
,

where tau is the denominator time constant and the time constant of numerator is an
a-multiple of tau (a ∗ tau). If ISSF = on, then the state of the filter is set to the steady
value at the block initialization according to the input signal u.

This block is ideal for simulation of first order plus dead time systems (FOPDT).
Just set the a parameter to zero.

The exact discretization at the sampling instants is used for discretization of the
C(s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the LLC block.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
tau Time constant �1.0 double

a Numerator time constant coefficient double

ISSF Steady state at start-up bool

off . . . Zero initial state
on Initial steady state

175

MCU – Manual control unit

Block Symbol Licence: STANDARD

tv
UP
DN
rv
LOC

y

MCU

Function Description
The MCU block is suitable for manual setting of the numerical output value y, e.g. a
setpoint. In the local mode (LOC = on) the value is set using the buttons UP and DN.
The rate of increasing/decreasing of the output y from the initial value y0 is determined
by the integration time constant tm and pushing time of the buttons. After elapsing ta

seconds while a button is pushed, the rate is always multiplied by the factor q until
the time tf is elapsed. Optionally, the output y range can be constrained (SATF = on)
by saturation limits lolim and hilim. If none of the buttons is pushed (UP = off and
DN = off), the output y tracks the input value tv. The tracking speed is controlled by
the integration time constant tt.

In the remote mode (LOC = off), the input rv is optionally saturated (SATF = on)
and copied to the output y. The detailed function of the block is depicted in the following
diagram.

tv

UP

DN

rv

LOC

y1

0

hilim
lolim

SATF

1

0

x0

1
1

s

1

Tm

1

Tt

G−

G+

5

4

3

2

1

Inputs
tv Tracking variable double

UP The "up" signal bool

DN The "down" signal bool

rv Remote output value in the mode LOC = off double

176 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

LOC Local or remote mode bool

Output
y Analog output of the block double

Parameters
tt Tracking time constant of the input tv �1.0 double

tm Initial value of integration time constant �100.0 double

y0 Initial output value double

q Multiplication quotient �5.0 double

ta Interval after which the rate is changed [s] �4.0 double

tf Interval after which the rate changes no more [s] �8.0 double

SATF Saturation flag bool

off . . . Signal not limited
on Saturation limits active

hilim Upper limit of the output signal �1.0 double

lolim Lower limit of the output signal �-1.0 double

177

PIDAT – PID controller with relay autotuner

Block Symbol Licence: AUTOTUNING

dv

sp

pv

tv

hv

MAN

TUNE

TBRK

mv
de

SAT
TBSY

TE
ite
pk
pti

ptd
pnd
pb

PIDAT

Function Description
The PIDAT block has the same control function as the PIDU block. Additionally it is
equipped with the relay autotuning function.

In order to perform the autotuning experiment, it is necessary to drive the system to
approximately steady state (at a suitable working point), choose the type of controller
to be autotuned (PI or PID) and activate the TUNE input by setting it to on. The con-
trolled process is regulated by special adaptive relay controller in the experiment which
follows. One point of frequency response is estimated from the data measured during
the experiment. Based on this information the controller parameters are computed. The
amplitude of the relay controller (the level of system excitation) and its hysteresis is
defined by the amp and hys parameters. In case of hys=0 the hysteresis is determined
automatically according to the measurement noise properties on the controlled variable
signal. The signal TBSY is set to onduring the tuning experiment. A successful experiment
is indicated by and the controller parameters can be found on the outputs pk, pti, ptd,
pnd and pb. The c weighting factor is assumed (and recommended) c=0. A failure during
the experiment causes TE = on and the output ite provides further information about
the problem. It is recommended to increase the amplitude amp in the case of error. The
controller is equipped with a built-in function which decreases the amplitude when the
deviation of output from the initial steady state exceeds the maxdev limit. The tuning
experiment can be prematurely terminated by activating the TBRK input.

Inputs
dv Feedforward control variable double

sp Setpoint variable double

pv Process variable double

tv Tracking variable double

hv Manual value double

178 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

MAN Manual or automatic mode bool

off . . . Automatic mode
on Manual mode

TUNE Start the tuning experiment bool

TBRK Stop the tuning experiment bool

Outputs
mv Manipulated variable (controller output) double

de Deviation error double

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy flag bool

TE Tuning error bool

off . . . Autotuning successful
on An error occurred during the experiment

ite Error code; expected time (in seconds) to finishing the tuning
experiment while the tuning experiment is active

long

1000 . . Signal/noise ratio too low
1001 . . Hysteresis too high
1002 . . Too tight termination rule
1003 . . Phase out of interval

pk Proposed controller gain double

pti Proposed integral time constant double

ptd Proposed derivative time constant double

pnd Proposed derivative component filtering double

pb Proposed weighting factor – proportional component double

Parameters
irtype Controller type (control law) �6 long

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action flag bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K �1.0 double

ti Integral time constant Ti �4.0 double

td Derivative time constant Td �1.0 double

nd Derivative filtering parameter N �10.0 double

b Setpoint weighting – proportional part �1.0 double

c Setpoint weighting – derivative part double

tt Tracking time constant. No meaning for controllers without integrator.
�1.0

double

179

hilim Upper limit of the controller output �1.0 double

lolim Lower limit of the controller output �-1.0 double

iainf Type of apriori information �1 long

1 No apriori information
2 Astatic process (process with integration)
3 Low order process
4 Static process + slow closed loop step response
5 Static process + middle fast (normal) closed loop step

response
6 Static process + fast closed loop step response

k0 Static gain of the process (must be provided in case of iainf = 3, 4, 5)
�1.0

double

n1 Maximum number of half-periods for estimation of frequency response
point �20

long

mm Maximum number of half-periods for averaging �4 long

amp Relay controller amplitude �0.1 double

uhys Relay controller hysteresis double

ntime Length of noise amplitude estimation period at the beginning of the
tuning experiment [s] �5.0

double

rerrap Termination value of the oscillation amplitude relative error �0.1 double

aerrph Termination value of the absolute error in oscillation phase �10.0 double

maxdev Maximal admissible deviation error from the initial steady state
�1.0

double

It is recommended not to change the parameters n1, mm, ntime, rerrap and aerrph.

180 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

PIDE – PID controller with defined static error

Block Symbol Licence: ADVANCED

dv
sp
pv
tv
hv
MAN

mv

de

SAT

PIDE

Function Description
The PIDE block is a basis for creating a modified PI(D) controller which differs from
the standard PI(D) controller (the PIDU block) by having a finite static gain (in fact,
the value ε which causes the saturation of the output is entered). In the simplest case
it can work autonomously and provide the standard functionality of the modified PID
controller with two degrees of freedom in the automatic (MAN = off) or manual mode
(MAN = on).

If in automatic mode and if the saturation limits are not active, the controller im-
plements a linear control law given by

U(s) = ±K

[
bW (s)− Y (s) +

1

Tis+ β
E(s) +

Tds
Tds
N + 1

(cW (s)− Y (s))

]
+ Z(s),

where
β =

Kε

1−Kε

U(s) is the Laplace transform of the manipulated variable mv, W (s) is the Laplace
transform of the setpoint sp, Y (s) is the Laplace transform of the process variable pv,
E(s) is the Laplace transform of the deviation error, Z(s) is the Laplace transform of the
feedforward control variable dv and K, Ti, Td, N , ε (= bp/100), b and c are the controller
parameters. The sign of the right hand side depends on the parameter RACT. The range of
the manipulated variable mv (position controller output) is limited by parameters hilim,
lolim.

By connecting the output mv of the controller to the controller input tv and properly
setting the tracking time constant tt we obtain the bumpless operation of the controller
in the case of the mode switching (manual, automatic) and also the correct operation of
the controller when saturation of the output mv occurs (antiwindup).

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. In this mode the inner controller state tracks the signal connected to the tv

input so the successive switching to the automatic mode is bumpless. But the tracking
is not precise for ε > 0.

181

Inputs
dv Feedforward control variable double

sp Setpoint variable double

pv Process variable double

tv Tracking variable double

hv Manual value double

MAN Manual or automatic mode bool

off . . . Automatic mode
on Manual mode

Outputs
mv Manipulated variable (controller output) double

de Deviation error double

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

Parameters
irtype Controller type (control law) �6 long

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action flag bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K �1.0 double

ti Integral time constant Ti �4.0 double

td Derivative time constant Td �1.0 double

nd Derivative filtering parameter N �10.0 double

b Setpoint weighting – proportional part �1.0 double

c Setpoint weighting – derivative part double

tt Tracking time constant. No meaning for controllers without integrator.
�1.0

double

bp Static error coefficient double

hilim Upper limit of the controller output �1.0 double

lolim Lower limit of the controller output �-1.0 double

182 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

PIDGS – PID controller with gain scheduling

Block Symbol Licence: ADVANCED

dv
sp
pv
tv
hv
MAN
IH
ip
vp

mv

dmv

de

SAT

kp

PIDGS

Function Description
The functionality of the PIDGS block is completely equivalent to the PIDU block. The
only difference is that the PIDGS block has a at most six sets of basic PID controller
parameters and allow bumpless switching of these sets by the ip (parameter set index)
or vp inputs. In the latter case it is necessary to set GSCF = on and provide an array of
threshold values thsha. The following rules define the active parameter set: the set 0 is
active for vp < thrsha(0), the set 1 for thrsha(1) < vp < thrsha(2) etc. till the set 5

for thrsha(5) < vp. The index of the active parameter set is available at the kp output.

Inputs
dv Feedforward control variable double

sp Setpoint variable double

pv Process variable double

tv Tracking variable double

hv Manual value double

MAN Manual or automatic mode bool

off . . . Automatic mode
on Manual mode

IH Integrator hold bool

off . . . Integration enabled
on Integration disabled

ip Parameter set index ↓0 ↑5 long

vp Switching analog signal double

Outputs
mv Manipulated variable (controller output) double

dmv Controller velocity output (difference) double

de Deviation error double

183

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

kp Active parameter set index long

Parameters
hilim Upper limit of the controller output �1.0 double

lolim Lower limit of the controller output �-1.0 double

dz Dead zone double

icotype Controller output type �1 long

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

npars Number of controller parameter sets �6 long

GSCF Switch parameters by analog signal vp bool

off . . . Index-based switching
on Analog signal based switching

hys Hysteresis for controller parameters switching double

irtypea Vector of controller types (control laws) �[6 6 6 6 6 6] byte

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACTA Vector of reverse action flags �[0 0 0 0 0 0] bool

0 Higher mv → higher pv
1 Higher mv → lower pv

ka Vector of controller gains K �[1.0 1.0 1.0 1.0 1.0 1.0] double

tia Vector of integral time constants Ti �[4.0 4.0 4.0 4.0 4.0 4.0] double

tda Vector of derivative time constants Td

�[1.0 1.0 1.0 1.0 1.0 1.0]

double

nda Vector of derivative filtering parameters N
�[10.0 10.0 10.0 10.0 10.0 10.0]

double

ba Setpoint weighting factors – proportional part
�[1.0 1.0 1.0 1.0 1.0 1.0]

double

ca Setpoint weighting factors – derivative part
�[0.0 0.0 0.0 0.0 0.0 0.0]

double

tta Vector of tracking time constants. No meaning for controllers without
integrator. �[1.0 1.0 1.0 1.0 1.0 1.0]

double

thrsha Vector of thresholds for switching the parameters
�[0.1 0.2 0.3 0.4 0.5 0]

double

184 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

PIDMA – PID controller with moment autotuner

Block Symbol Licence: AUTOTUNING

dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv

de
SAT

TBSY
TE
ite

trem
pk
pti

ptd
pnd
pb
pc

PIDMA

Function Description
The PIDMA block has the same control function as the PIDU block. Additionally it is
equipped with the moment autotuning function.

In the automatic mode (MAN = off), the block PIDMA implements the PID control
law with two degrees of freedom in the form

U(s) = ±K

{
bW (s)− Y (s) +

1

Tis
[W (s)− Y (s)] +

Tds
Td
N s+ 1

[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, Ti, Td, N , b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output)
is limited by parameters hilim, lolim. The parameter dz determines the dead zone in
the integral part of the controller. The integral part of the control law can be switched
off and fixed on the current value by the integrator hold input IH = on. For the proper
function of the controller it is necessary to connect the output mv of the controller to the
controller input tv and properly set the tracking time constant tt (the rule of thumb is
tt ≈

√
TiTd or tt ≈ 2 ·

√
Ti in the case of a PI controller). In this way we obtain the

bumpless operation of the controller in the case of the mode switching (manual, auto-
matic) and also the correct operation of the controller in the saturation of the output
mv (antiwindup). The additional outputs dmv, de and SAT generate the velocity output
(difference of mv), deviation error and saturation flag, respectively.

If the PIDMA block is connected with the block SCUV to configure the 3-point step
controller without the positional feedback, then the parameter icotype must be set to 4

185

and the meaning of the outputs mv and dmv and SAT is modified in the following way: mv
and dmv give the PD part and difference of I part of the control law, respectively, and
SAT provides the information for the SCUV block whether the deviation error is less than
the dead zone dz in the automatic mode. In this case, the setpoint weighting factor c

should be zero.
In the manual mode (MAN = on), the input hv is copied to the output mv unless

saturated. The overall control function of the PIDMA block is quite clear from the following
diagram:

RACT

RACT

RACT

AUT

MAN

dv

sp

pv

tv

hv

MAN

mv

de

SAT

dmv

IH

0

0

icotype=SCUV

0

1

1

0

1
0

0

1

0

1

4

3

2

1

1

Tt

1

s

K

Ti

KTd.s

Td/N.s+1

NOT
AND

OR

diff

+−1

+−1c

K

+−1

b

7

6

5

4

3

2

1

The block PIDMA extends the control function of the standard PID controller by the
built in autotuning feature. Before start of the autotuner the operator have to reach the
steady state of the process at a suitable working point (in manual or automatic mode)
and specify the required type of the controller ittype (PI or PID) and other tuning
parameters (iainf, DGC, tdg, tn, amp, dy and ispeed). The identification experiment is
started by the input TUNE (input TBRK finishes the experiment). In this mode (TBSY = on),
first of all the noise and possible drift gradient (DGC = on) are estimated during the user
specified time (tdg+tn) and then the rectangle pulse is applied to the input of the process
and the first three process moments are identified from the pulse response. The amplitude
of the pulse is set by the parameter amp. The pulse is finished when the process variable
pv deviates from the steady value more than the dy threshold defines. The threshold is
an absolute difference, therefore it is always a positive value. The duration of the tuning
experiment depends on the dynamic behavior of the process. The remaining time to the
end of the tuning is provided by the output trem.

If the identification experiment is properly finished (TE = off) and the input ips

is equal to zero, then the optimal parameters immediately appear on the block outputs
pk, pti, ptd, pnd, pb, pc. In the opposite case (TE = on) the output ite specifies the
experiment error more closely. Other values of the ips input are reserved for custom
specific purposes.

The function of the autotuner is illustrated in the following picture.

186 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

During the experiment, the output ite indicates the autotuner phases. In the phase of
estimation of the response decay rate (ite = -4) the tuning experiment may be finished
manually before its regular end. In this case the controller parameters are designed but
the potential warning is indicated by setting the output ite=100.

At the end of the experiment (TBSY on→off), the function of the controller depends
on the current controller mode. If the TAFF = on the designed controller parameters are
immediately accepted.

Inputs
dv Feedforward control variable double

sp Setpoint variable double

pv Process variable double

tv Tracking variable double

hv Manual value double

MAN Manual or automatic mode bool

off . . . Automatic mode
on Manual mode

IH Integrator hold bool

off . . . Integration enabled
on Integration disabled

TUNE Start the tuning experiment (off→on) or force transition to the next
tuning phase (see the description of the ite output)

bool

TBRK Stop the tuning experiment bool

187

TAFF Tuning affirmation; determines the way the computed parameters are
handled

bool

off . . . Parameters are only computed
on Parameters are set into the control law

ips Meaning of the output signals pk, pti, ptd, pnd, pb and pc long

0 Designed parameters k, ti, td, nd, b and c of the PID
control law

1 Process moments: static gain (pk), resident time constant
(pti), measure of the system response length (ptd)

2 Three-parameter first-order plus dead-time model: static
gain (pk), dead-time (pti), time constant (ptd)

3 Three-parameter second-order plus dead-time model with
double time constant: static gain (pk), dead-time (pti),
time constant (ptd)

4 Estimated boundaries for manual fine-tuning of the PID
controller (irtype = 7) gain k: upper boundary khi (pk),
lower boundary klo (pti)

>99 . . . Reserved for diagnostic purposes

Outputs
mv Manipulated variable (controller output) double

dmv Controller velocity output (difference) double

de Deviation error double

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy flag bool

TE Tuning error bool

off . . . Autotuning successful
on An error occurred during the experiment

ite Error code long

Tuning error codes (after the experiment):
0 No error or waiting for steady state
1 Too small pulse getdown threshold
2 Too large pulse amplitude
3 Steady state condition violation
4 Too small pulse aplitude
5 Peak search procedure failure
6 Output saturation occurred during experiment
7 Selected controller type not supported
8 Process not monotonous
9 Extrapolation failure
10 Unexpected values of moments (fatal)
11 Abnormal manual termination of tuning
12 Wrong direction of manipulated variable
100 . . . Manual termination of tuning (warning)

188 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

Tuning phases codes (during the experiment):
0 Steady state reaching before the start of the experiment
-1 Drift gradient and noise estimation phase
-2 Pulse generation phase
-3 Searching the peak of system response
-4 Estimation of the system response decay rate

Remark about terminating the tuning phases
TUNE . . The rising edge of the TUNE input during the phases -2,

-3 and -4 causes the finishing of the current phase and
transition to the next one (or finishing the experiment in
the phase -4).

trem Estimated time to finish the tuning experiment [s] double

pk Proposed controller gain K (ips = 0) double

pti Proposed integral time constant Ti (ips = 0) double

ptd Proposed derivative time constant Td (ips = 0) double

pnd Proposed derivative component filtering N (ips = 0) double

pb Proposed weighting factor – proportional component (ips = 0) double

pc Proposed weighting factor – derivative component (ips = 0) double

Parameters
irtype Controller type (control law) �6 long

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action flag bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K �1.0 double

ti Integral time constant Ti �4.0 double

td Derivative time constant Td �1.0 double

nd Derivative filtering parameter N �10.0 double

b Setpoint weighting – proportional part �1.0 double

c Setpoint weighting – derivative part double

tt Tracking time constant. No meaning for controllers without integrator.
�1.0

double

hilim Upper limit of the controller output �1.0 double

lolim Lower limit of the controller output �-1.0 double

dz Dead zone double

icotype Controller output type �1 long

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

189

ittype Controller type to be designed �6 long

6 PI controller
7 PID controller

iainf Type of apriori information �1 long

1 Static process
2 Astatic process

DGC Drift gradient compensation �on bool

off . . . Disabled
on Enabled

tdg Drift gradient estimation time [s] �60.0 double

tn Length of noise estimation period [s] �5.0 double

amp Tuning pulse amplitude �0.5 double

dy Tuning pulse get down threshold (absolute difference from the steady
pv value) ↓0.0 �0.1

double

ispeed Desired closed loop speed �2 long

1 Slow closed loop
2 Normal (middle fast) closed loop
3 Fast closed loop

ipid PID controller form �1 long

1 Parallel form
2 Series form

190 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

PIDU – PID controller unit

Block Symbol Licence: STANDARD

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU

Function Description
The PIDU block is a basic block for creating a complete PID controller (or P, I, PI, PD,
PID, PI+S). In the most simple case it works as a standalone unit with the standard
PID controller functionality with two degrees of freedom. It can operate in automatic
mode (MAN = off) or manual mode (MAN = on).

In the automatic mode (MAN = off), the block PIDU implements the PID control law
with two degrees of freedom in the form

U(s) = ±K

{
bW (s)− Y (s) +

1

Tis
[W (s)− Y (s)] +

Tds
Td
N s+ 1

[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, Ti, Td, N , b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output) is
limited by parameters hilim, lolim. The parameter dz determines the dead zone in the
integral part of the controller. The integral part of the control law can be switched off
and fixed on the current value by the integrator hold input IH (IH = on). For the proper
function of the controller it is necessary to connect the output mv of the controller to the
controller input tv and properly set the tracking time constant tt (the rule of thumb
is tt ≈

√
TiTd or tt ≈ 2 ·

√
Ti in the case of a PI controller). In this way we obtain

the bumpless operation of the controller in the case of the mode switching (manual, au-
tomatic) and also the correct operation of the controller when saturation of the output
mv occurs (antiwindup). The additional outputs dmv, de and SAT generate the velocity
output (difference of mv), deviation error and saturation flag, respectively.

If the PIDU block is connected with the SCUV block to configure the 3-point step
controller without the positional feedback, then the parameter icotype must be set to
4 and the meaning of the outputs mv and dmv and SAT is modified in the following way:
mv and dmv give the PD part and difference of I part of the control law, respectively, and

191

SAT provides the information for the SCUV block whether the deviation error is less than
the dead zone dz in the automatic mode. In this case, the setpoint weighting factor c

should be zero.
In the manual mode (MAN = on), the input hv is copied to the output mv unless

saturated. The overall control function of the PIDU block is quite clear from the following
diagram:

RACT

RACT

RACT

AUT

MAN

dv

sp

pv

tv

hv

MAN

mv

de

SAT

dmv

IH

0

0

icotype=SCUV

0

1

1

0

1
0

0

1

0

1

4

3

2

1

1

Tt

1

s

K

Ti

KTd.s

Td/N.s+1

NOT
AND

OR

diff

+−1

+−1c

K

+−1

b

7

6

5

4

3

2

1

Inputs
dv Feedforward control variable double

sp Setpoint variable double

pv Process variable double

tv Tracking variable double

hv Manual value double

MAN Manual or automatic mode bool

off . . . Automatic mode
on Manual mode

IH Integrator hold bool

off . . . Integration enabled
on Integration disabled

Outputs
mv Manipulated variable (controller output) double

dmv Controller velocity output (difference) double

de Deviation error double

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

192 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

Parameters
irtype Controller type (control law) �6 long

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action flag bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K �1.0 double

ti Integral time constant Ti �4.0 double

td Derivative time constant Td �1.0 double

nd Derivative filtering parameter N �10.0 double

b Setpoint weighting – proportional part �1.0 double

c Setpoint weighting – derivative part double

tt Tracking time constant. No meaning for controllers without integrator.
�1.0

double

hilim Upper limit of the controller output �1.0 double

lolim Lower limit of the controller output �-1.0 double

dz Dead zone double

icotype Controller output type �1 long

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

193

PIDUI – PID controller unit with variable parameters

Block Symbol Licence: ADVANCED

dv
sp
pv
tv
hv
MAN
IH
k
ti
td
nd
b
c

mv

dmv

de

SAT

PIDUI

Function Description
The functionality of the PIDUI block is completely equivalent to the PIDU block. The only
difference is that the PID control algorithm parameters are defined by the input signals
and therefore they can depend on the outputs of other blocks. This allows creation of
special adaptive PID controllers.

Inputs
dv Feedforward control variable double

sp Setpoint variable double

pv Process variable double

tv Tracking variable double

hv Manual value double

MAN Manual or automatic mode bool

off . . . Automatic mode
on Manual mode

IH Integrator hold bool

off . . . Integration enabled
on Integration disabled

k Controller gain K double

ti Integral time constant Ti double

td Derivative time constant Td double

nd Derivative filtering parameter N double

b Setpoint weighting – proportional part double

c Setpoint weighting – derivative part double

194 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

Outputs
mv Manipulated variable (controller output) double

dmv Controller velocity output (difference) double

de Deviation error double

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

Parameters
irtype Controller type (control law) �6 long

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action flag bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

tt Tracking time constant. No meaning for controllers without integrator.
�1.0

double

hilim Upper limit of the controller output �1.0 double

lolim Lower limit of the controller output �-1.0 double

dz Dead zone double

icotype Controller output type �1 long

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

195

POUT – Pulse output

Block Symbol Licence: STANDARD

U Y

POUT

Function Description
The POUT block shapes the input pulses U in such a way, that the output pulse Y has a
duration of at least dtime seconds and the idle period between two successive output
pulses is at least btime seconds. The input pulse occuring sooner than the period of
btime seconds since the last falling edge of the output signal elapses has no effect on the
output signal Y.

Input
U Logical input of the block bool

Output
Y Logical output of the block bool

Parameters
dtime Minimum width of the output pulse [s] �1.0 double

btime Minimum delay between two successive output pulses [s] �1.0 double

196 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

PRGM – Setpoint programmer

Block Symbol Licence: STANDARD

RUN
DEF
spv
HLD
CON
ind
trt
RPT

sp
isc
tsc

tt
rt

CNF
E

PRGM

Function Description
The PRGM block generates functions of time (programs) composed of n linear parts
defined by (n + 1)-dimensional vectors of time (tm = [t0, . . . , tn]) and output values
(y = [y0, . . . , yn]). The generated time-course is continuous piecewise linear, see figure
below. This block is most commonly used as a setpoint generator for a controller. The
program generation starts when RUN = on. In the case of RUN = off the programmer is
set back to the initial state. The input DEF = on sets the output sp to the value spv.
It follows a ramp to the nearest future node of the time function when DEF = off. The
internal time of the generator is not affected by this input. The input HLD = on freezes
the output sp and the internal time, thus also the outputs tsc, tt and rt. The program
follows from freezing point as planned when HLD = off unless the input CON = on at the
moment when the signal HLD on→off. In that case the program follows a ramp to reach
the node with index ind in time trt. The node index ind must be equal to or higher
than the index of current sector isc (at the moment when HLD on→off). If RPT = on,
the program is generated repeatedly.

Inputs
RUN Enable execution bool

DEF Initialize sp to the value of spv bool

197

spv Initializing constant double

HLD Output and timer freezing bool

CON Continue from defined node bool

ind Index of the node to continue from long

trt Time to reach the defined node with index ind double

RPT Repetition flag bool

Outputs
sp Setpoint variable (function value of the time function at given time) double

isc Current function sector long

tsc Time elapsed since the start of current sector double

tt Time elapsed since the start of program generation double

rt Remaining time till the end of program double

CNF Flag indicating that the configured curve is being followed bool

E Error flag – the node times are not ascending bool

Parameters
n Number of sectors ↓1 ↑10000000 �2 long

tmunits Time units �1 long

1 seconds
2 minutes
3 hours

tm (n+ 1)-dimensional vector of ascending node times �[0 1 2] double

y (n+1)-dimensional vector of node values (values of the time function)
�[0 1 0]

double

198 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

PSMPC – Pulse-step model predictive controller

Block Symbol Licence: ADVANCED

sp

pv

tv

hv

MAN

mv
dmv

de
SAT
pve

iE

PSMPC

Function Description
The PSMPC block can be used for control of hardly controllable linear time-invariant
systems with manipulated value constraints (e.g. time delay or non-minimum phase
systems). It is especially well suited for the case when fast transition without overshoot
from one level of controlled variable to another is required. In general, the PSMPC block
can be used where the PID controllers are commonly used.

0 Ts 2Ts 3Ts 4Ts N Ts
time

y(
t)

g(1)

g(3)

g(2)

g(4) g(N)

h(1)

h(2)

h(3)

h(4)

The PSMPC block is a predictive controller with explicitly defined constraints on the
amplitude of manipulated variable.

The prediction is based on the discrete step response g(j), j = 1, . . . , N is used. The
figure above shows how to obtain the discrete step response g(j), j = 0, 1, . . . , N and the
discrete impulse response h(j), j = 0, 1, . . . , N with sampling period TS from continuous
step response. Note that N must be chosen such that N ·TS > t95, where t95 is the time
to reach 95 % of the final steady state value.

199

For stable, linear and t-invariant systems with monotonous step response it is also
possible to use the moment model set approach [5] and describe the system by only
3 characteristic numbers κ, µ, and σ2, which can be obtained easily from a very short
and simple experiment. The controlled system can be approximated by first order plus
dead-time system

FFOPDT (s) =
K

τs+ 1
· e−Ds, κ = K, µ = τ +D, σ2 = τ2 (7.1)

or second order plus dead-time system

FSOPDT (s) =
K

(τs+ 1)2
· e−Ds, κ = K, µ = 2τ +D, σ2 = 2τ2 (7.2)

with the same characteristic numbers. The type of approximation is selected by the
imtype parameter.

To lower the computational burden of the open-loop optimization, the family of
admissible control sequences contains only sequences in the so-called pulse-step shape
depicted below:

N
c

n
2

n
1

u−

u+

u∞

n
1

n
2

N
c

u∞

u+

u−

p
0
=1

p
0
=0

Note that each of these sequences is uniquely defined by only four numbers n1, n2 ∈
{0, . . . , NC}, p0 and u∞ ∈ 〈u−, u+〉, where NC ∈ {0, 1, . . .} is the control horizon and
u−, u+ stand for the given lower and upper limit of the manipulated variable. The on-line
optimization (with respect to p0, n1, n2 and u∞) minimizes the criterion

I =

N2∑
i=N1

ê(k + i|k)2 + λ

NC∑
i=0

∆û(k + i |k)2 → min, (7.3)

where ê(k + i|k) is the predicted control error at time k over the coincidence interval
i ∈ {N1, N2}, ∆û(k + i|k) are the differences of the control signal over the interval i ∈
{0, NC} and λ penalizes the changes in the control signal. The algorithm used for solving
the optimization task (7.3) combines brute force and the least squares method. The value
u∞ is determined using the least squares method for all admissible combinations of p0,
n1 and n2 and the optimal control sequence is selected afterwards. The selected sequence
in the pulse-step shape is optimal in the open-loop sense. To convert from open-loop to
closed-loop control strategy, only the first element of the computed control sequence is
applied and the whole optimization procedure is repeated in the next sampling instant.

200 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

The parameters N1, N2, HC , and λ in the criterion (7.3) take the role of design
parameters. Only the last parameter λ is meant for manual tuning of the controller.
In the case the model in the form (7.1) or (7.2) is used, the parameters N1 and N2

are determined automatically with respect to the µ and σ2 characteristic numbers. The
controller can be then effectively tuned by adjusting the characteristic numbers κ, µ and
σ2.

Warning
It is necessary to set the nsr parameter to sufficiently large number to avoid Mat-
lab/Simulink crash when using the PSMPC block for simulation purposes. Especially when
using FOPDT or SOPDT model, the nsr parameter must be greater than the length of
the internally computed discrete step response.

Inputs
sp Setpoint variable double

pv Process variable double

tv Tracking variable (applied control signal) double

hv Manual value double

MAN Manual or automatic mode bool

off . . . Automatic mode
on Manual mode

Outputs
mv Manipulated variable (controller output) double

dmv Controller velocity output (difference) double

de Deviation error double

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

pve Predicted process variable based on the controlled process model double

iE Error code long

0 No error
1 Incorrect FOPDT model
2 Incorrect SOPDT model
3 Invalid step response sequence

Parameters
nc Control horizon length (NC) �5 long

np1 Start of coincidence interval (N1) �1 long

np2 End of coincidence interval (N2) �10 long

lambda Control signal penalization coefficient (λ) �0.05 double

umax Upper limit of the controller output (u+) �1.0 double

umin Lower limit of the controller output (u−) �-1.0 double

201

imtype Controlled process model type �3 long

1 FOPDT model (7.1)
2 SOPDT model (7.2)
3 Discrete step response

kappa Static gain (κ) �1.0 double

mu Resident time constant (µ) �20.0 double

sigma Measure of the system response length (
√
σ2) �10.0 double

nsr Length of the discrete step response (N), see the warning above
↓10 ↑10000000 �11

long

sr Discrete step response sequence ([g(1), . . . , g(N)])
�[0 0.2642 0.5940 0.8009 0.9084 0.9596 0.9826 0.9927 0.9970 0.9988 0.9995]

double

202 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

PWM – Pulse width modulation

Block Symbol Licence: STANDARD

u UP
DN

PWM

Function Description
The PWM block implements a pulse width modulation algorithm for proportional actua-
tors. In the general, it is assumed the input signal u ranges in the interval from -1 to +1.
The width L of the output pulse is computed by the expression:

L = pertm ∗ |u| ,

where pertm is the modulation time period. If u > 0 (u < 0), the pulse is generated in
the output UP (DN). However, the width of the generated pulses are affected by other
parameters of the block. The asymmetry factor asyfac determines the ratio of negative
pulses duration to positive pulses duration. The modified pulse widths are given by:

if u > 0 then L(UP) :=

{
L for asyfac ≤ 1.0
L/asyfac for asyfac > 1.0

if u < 0 then L(DN) :=

{
L ∗ asyfac for asyfac ≤ 1.0
L for asyfac > 1.0

Further, if the computed width is less than minimum pulse duration dtime the width
is set to zero. If the pulse width differs from the modulation period pertm less than
minimum pulse break time btime then width of the pulse is set to pertm. In the case the
positive pulse is succeeded by the negative one (or vice versa) the latter pulse is possibly
shifted in such a way that the distance between these pulses is at least equal to the
minimum off time offtime. If SYNCH = on, then the change of the input value u causes
the immediate recalculation of the current pulse widths if a synchronization condition is
violated.

Input
u Analog input of the block double

Outputs
UP The "up" signal bool

DN The "down" signal bool

203

Parameters
pertm Modulation period length [s] �10.0 double

dtime Minimum width of the output pulse [s] �0.1 double

btime Minimum delay between output pulses [s] �0.1 double

offtime Minimum delay when altering direction [s] �1.0 double

asyfac Asymmetry factor �1.0 double

SYNCH Synchronization flag of the period start bool

off . . . Synchronization disabled
on Synchronization enabled

204 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

RLY – Relay with hysteresis

Block Symbol Licence: STANDARD

u y

RLY

Function Description
The RLY block transforms the input signal u to the output signal y according to the
figure below.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
ep The value u > ep causes y = ap ("On") �1.0 double

en The value u < en causes y = an ("Off") �-1.0 double

ap Output value y in the "On" state �1.0 double

an Output value y in the "Off" state �-1.0 double

y0 Initial output value at start-up double

205

SAT – Saturation with variable limits

Block Symbol Licence: STANDARD

u
hi
lo

y
HL
LL

SAT

Function Description
The SAT block copies the input u to the output y if the input signal satisfies lolim ≤ u

and u ≤ hilim, where lolim and hilim are state variables of the block. If u < lolim

(u > hilim), then y = lolim (y = hilim). The upper and lower limits are either
constants (HLD = on) defined by parameters hilim0 and lolim0 respectively or input-
driven variables (HLD = off, hi and lo inputs). The maximal rate at which the active
limits may vary is given by time constants tp (positive slope) and tn (negative slope).
These rates are active even if the saturation limits are changed manually (HLD = on)
using the hilim0 and lolim0 parameters. To allow immediate changes of the saturation
limits, set tp = 0 and tn = 0. The HL and LL outputs indicate the upper and lower
saturation respectively.

If necessary, the hilim0 and lolim0 parameters are used as initial values for the
input-driven saturation limits.

Inputs
u Analog input of the block double

hi Upper limit of the output signal (for the case HLD = off) double

lo Lower limit of the output signal (for the case HLD = off) double

Outputs
y Analog output of the block double

HL Upper limit saturation indicator bool

LL Lower limit saturation indicator bool

Parameters
tp Time constant defining the maximal positive slope of active limit

changes �1.0
double

tn Time constant defining the maximum negative slope of active limit
changes �1.0

double

hilim0 Upper limit of the output (valid for HLD = on) �1.0 double

lolim0 Lower limit of the output (valid for HLD = on) �-1.0 double

206 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

HLD Fixed saturation limits �on bool

off . . . Variable limits on Fixed limits

207

SC2FA – State controller for 2nd order system with frequency
autotuner

Block Symbol Licence: AUTOTUNING

dv
sp
pv
tv
hv
MAN
ID
TUNE
HLD
BRK
SETC
ips
MFR

mv
de

SAT
IDBSY

w
xre
xim
epv
IDE
iIDE

p1
p2
p3
p4
p5
p6

SC2FA

Function Description
The SC2FA block implements a state controller for 2nd order system (7.4) with frequency
autotuner. It is well suited especially for control (active damping) of lightly damped
systems (ξ < 0.1). But it can be used as an autotuning controller for arbitrary system
which can be described with sufficient precision by the transfer function

F (s) =
b1s+ b0

s2 + 2ξΩs+Ω2
, (7.4)

where Ω>0 is the natural (undamped) frequency, ξ, 0<ξ<1, is the damping coefficient
and b1, b0 are arbitrary real numbers. The block has two operating modes: "Identification
and design mode" and "Controller mode".

The "Identification and design mode" is activated by the binary input ID = on. Two
points of frequency response with given phase delay are measured during the identifica-
tion experiment. Based on these two points a model of the controlled system is built.
The experiment itself is initiated by the rising edge of the RUN input. A harmonic sig-
nal with amplitude uamp, frequency ω and bias ubias then appears at the output mv.
The frequency runs through the interval 〈wb, wf〉, it increases gradually. The current fre-
quency is copied to the output w. The rate at which the frequency changes (sweeping) is
determined by the cp parameter, which defines the relative shrinking of the initial period
Tb =

2π
wb

of the exciting sine wave in time Tb, thus

cp =
wb

ω(Tb)
=

wb

wbeγTb
= e−γTb .

208 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

The cp parameter usually lies within the interval cp ∈ 〈0,95; 1). The lower the damping
coefficient ξ of the controlled system is, the closer to one the cp parameter must be.

At the beginning of the identification period the exciting signal has a frequency of
ω = wb. After a period of stime seconds the estimation of current frequency response
point starts. Its real and imaginary parts are available at the xre and xim outputs. If
the MANF parameter is set to 0, then the frequency sweeping is stopped two times during
the identification period. This happens when points with phase delay of ph1 and ph2 are
reached for the first time. The breaks are stime seconds long. Default phase delay values
are −60◦ and −120◦, respectively, but these can be changed to arbitrary values within the
interval (−360◦, 0◦), where ph1 > ph2. At the end of each break an arithmetic average
is computed from the last iavg frequency point estimates. Thus we get two points of
frequency response which are successively used to compute the controlled process model
in the form of (7.4). If the MANF parameter is set to 1, then the selection of two frequency
response points is manual. To select the frequency, set the input HLD = on, which stops
the frequency sweeping. The identification experiment continues after returning the input
HLD to 0. The remaining functionality is unchanged.

It is possible to terminate the identification experiment prematurely in case of neces-
sity by the input BRK = on. If the two points of frequency response are already identified
at that moment, the controller parameters are designed in a standard way. Otherwise
the controller design cannot be performed and the identification error is indicated by the
output signal IDE = on.

The IDBSY output is set to 1 during the "identification and design" phase. It is set
back to 0 after the identification experiment finishes. A successful controller design is
indicated by the output IDE = off. During the identification experiment the output iIDE
displays the individual phases of the identification: iIDE = −1 means approaching the
first point, iIDE = 1 means the break at the first point, iIDE = −2 means approaching
the second point, iIDE = 2 means the break at the second point and iIDE = −3 means
the last phase after leaving the second frequency response point. An error during the
identification phase is indicated by the output IDE = on and the output iIDE provides
more information about the error.

The computed state controller parameters are taken over by the control algorithm
as soon as the SETC input is set to 1 (i.e. immediately if SETC is constantly set to on).
The identified model and controller parameters can be obtained from the p1, p2, . . . , p6
outputs after setting the ips input to the appropriate value. After a successful identifi-
cation it is possible to generate the frequency response of the controlled system model,
which is initiated by a rising edge at the MFR input. The frequency response can be read
from the w, xre and xim outputs, which allows easy confrontation of the model and the
measured data.

The "Controller mode" (binary input ID = off) has manual (MAN = on) and auto-
matic (MAN = off) submodes. After a cold start of the block with the input ID = off it
is assumed that the block parameters mb0, mb1, ma0 and ma1 reflect formerly identified
coefficients b0, b1, a0 and a1 of the controlled system transfer function and the state con-
troller design is performed automatically. Moreover if the controller is in the automatic

209

mode and SETC = on, then the control law uses the parameters from the very beginning.
In this way the identification phase can be skipped when starting the block repeatedly.

x1=sinwt

x2=coswt

z1=b sin(wt+fi)

z1=b cos(wt+fi)

wb,wf,cp

w xre xim

ID=1

ID=0

hv

MAN=1

MAN=0

uco

uamp ubias
hilim
lolim

p1 p2 p3 p4 p5 p6

mv pv=y

y^=epv
y

y^ eps

controller

design

estimate

b0,b1,a0,a1

estimate

F(jw)

RCN_SIN

b1.s+b0

s +a1.s+a02

PROCESS

GEN_SIN

Demux

Demux
em

em

The diagram above is a simplified inner structure of the frequency autotuning part
of the controller. The diagram below shows the state feedback, observer and integra-
tor anti-wind-up. The diagram does not show the fact, that the controller design block
automatically adjusts the observer and state feedback parameters f1, . . . , f5 after iden-
tification experiment (and SETC = on).

-de

v1^

v2^

v3

dv

tv=mv

uco

v4

v5

mv

pv

sp

disturb.

model

observer

1

tt

1
s

f5

f4

f3

f2

f1

em

em

The controlled system is assumed in the form of (7.4). Another forms of this transfer
function are

F (s) =
(b1s+ b0)

s2 + a1s+ a0
(7.5)

and

F (s) =
K0Ω

2(τs+ 1)

s2 + 2ξΩs+Ω2
. (7.6)

The coefficients of these transfer functions can be found at the outputs p1,...,p6 after the
identification experiment (IDBSY = off). The output signals meaning is switched when
a change occurs at the ips input.

210 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

Inputs
dv Feedforward control variable double

sp Setpoint variable double

pv Process variable double

tv Tracking variable double

hv Manual value double

MAN Manual or automatic mode bool

off . . . Automatic mode on Manual mode
ID Identification or controller operating mode bool

off . . . Controller mode
on Identification and design

mode

TUNE Start the tuning experiment (off→on), the exciting harmonic signal
is generated

bool

HLD Stop frequency sweeping bool

BRK Termination signal bool

SETC Flag for accepting the new controller parameters and updating the
control law

bool

off . . . Parameters are only computed
on Parameters are accepted as soon as computed
off→on One-shot confirmation of the computed parameters

ips Switch for changing the meaning of the output signals long

0 Two points of frequency response
p1 . . . frequency of the 1st measured point in rad/s
p2 . . . real part of the 1st point
p3 . . . imaginary part of the 1st point
p4 . . . frequency of the 2nd measured point in rad/s
p5 . . . real part of the 2nd point
p6 . . . imaginary part of the 2nd point

1 Second order model in the form (7.5)
p1 . . . b1 parameter
p2 . . . b0 parameter
p3 . . . a1 parameter
p4 . . . a0 parameter

2 Second order model in the form (7.6)
p1 . . . K0 parameter
p2 . . . τ parameter
p3 . . . Ω parameter in rad/s
p4 . . . ξ parameter
p5 . . . Ω parameter in Hz
p6 . . . resonance frequency in Hz

3 State feedback parameters
p1 . . . f1 parameter
p2 . . . f2 parameter
p3 . . . f3 parameter
p4 . . . f4 parameter
p5 . . . f5 parameter

211

MFR Generation of the parametric model frequency response at the w, xre
and xim outputs (off→on triggers the generator)

bool

Outputs
mv Manipulated variable (controller output) double

de Deviation error double

SAT Saturation flag bool

off . . . The controller implements a linear control law
on The controller output is saturated

IDBSY Identification running bool

off . . . Identification not running
on Identification in progress

w Frequency response point estimate - frequency in rad/s double

xre Frequency response point estimate - real part double

xim Frequency response point estimate - imaginary part double

epv Reconstructed pv signal double

IDE Identification error indicator bool

off . . . Successful identification experiment
on Identification error occurred

iIDE Error code long

101 . . . Sampling period too low
102 . . . Error identifying one or both frequency response point(s)
103 . . . Manipulated variable saturation occurred during the

identification experiment
104 . . . Invalid process model

p1..p6 Results of identification and design phase double

Parameters
ubias Static component of the exciting harmonic signal double

uamp Amplitude of the exciting harmonic signal �1.0 double

wb Frequency interval lower limit [rad/s] �1.0 double

wf Frequency interval upper limit [rad/s] �10.0 double

isweep Frequency sweeping mode �1 long

1 Logarithmic
2 Linear (not implemented yet)

cp Sweeping rate ↓0.5 ↑1.0 �0.995 double

iavg Number of values for averaging �10 long

alpha Relative positioning of the observer poles (in identification phase)
�2.0

double

xi Observer damping coefficient (in identification phase) �0.707 double

MANF Manual frequency response points selection bool

off . . . Disabled
on Enabled

ph1 Phase delay of the 1st point in degrees �-60.0 double

212 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

ph2 Phase delay of the 2nd point in degrees �-120.0 double

stime Settling period [s] �10.0 double

ralpha Relative positioning of the observer poles �4.0 double

rxi Observer damping coefficient �0.707 double

acl1 Relative positioning of the 1st closed-loop poles couple �1.0 double

xicl1 Damping of the 1st closed-loop poles couple �0.707 double

INTGF Integrator flag �on bool

off . . . State-space model without integrator
on Integrator included in the state-space model

apcl Relative position of the real pole �1.0 double

DISF Disturbance flag bool

off . . . State space model without disturbance model
on Disturbance model is included in the state space model

dom Disturbance model natural frequency �1.0 double

dxi Disturbance model damping coefficient double

acl2 Relative positioning of the 2nd closed-loop poles couple �2.0 double

xicl2 Damping of the 2nd closed-loop poles couple �0.707 double

tt Tracking time constant �1.0 double

hilim Upper limit of the controller output �1.0 double

lolim Lower limit of the controller output �-1.0 double

mb1p Controlled system transfer function coefficient b1 double

mb0p Controlled system transfer function coefficient b0 �1.0 double

ma1p Controlled system transfer function coefficient a1 �0.2 double

ma0p Controlled system transfer function coefficient a0 �1.0 double

213

SCU – Step controller with position feedback

Block Symbol Licence: STANDARD

sp
pv
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

de

SCU

Function Description
The SCU block implements the secondary (inner) position controller of the step controller
loop. PIDU function block or some of the derived function blocks (PIDMA, etc.) is assumed
as the primary controller.

The SCU block processes the control deviation sp− pv by a three state element with
parameters (thresholds) thron and throff (see the TSE block, use parameters ep =
thron, epoff = throff, en = -thron and enoff = -throff). The parameter RACT

determines whether the UP or DN pulse is generated for positive or negative value of the
controller deviation. Two pulse outputs of the three state element are further shaped so
that minimum pulse duration dtime and minimum pulse break time btime are guaranteed
at the block UP and DN outputs. If signals from high and low limit switches of the valve
are available, they should be connected to the HS and LS inputs.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment/decrement request by the mdv input. In this case the request must be confirmed
by a rising edge (off→on) in the DVC input signal.

The control function of the SCU block is quite clear from the following diagram.

sp

pv

MUP

MDN

mdv

HS

LS

UP

de

DN

DVC

MAN

0

1

0

1

0

1

0

1

3

2

1

PWM

OR

AND
NOT

AND
NOT

AND
NOT

AND
NOT

9

8

7

6

5

4

3

2

1

214 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

The complete structure of the three-state step controller is depicted in the following
figure.

Position Feedback Signal

Process ValueSetpoint

MAN/AUT
Valve Drive

Optional Connections

sp
pv
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

de

SCU

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU

UP

DN

y

HS

LS

MVD
Motorized

Valve Drive

u y

MDL
Process

Inputs
sp Setpoint (output of the primary controller) double

pv Controlled variable (position of the motorized valve drive) double

HS Upper end switch (detects the upper limit position of the valve) bool

LS Lower end switch (detects the lower limit position of the valve) bool

MUP Manual UP signal bool

MDN Manual DN signal bool

mdv Manual differential value (requested position increment/decrement
with higher priority than direct signals MUP/MDN)

double

DVC Differential value change command (off→on) bool

MAN Manual or automatic mode bool

off . . . Automatic mode on Manual mode

Outputs
UP The "up" signal bool

DN The "down" signal bool

de Deviation error double

Parameters
thron Switch-on value ↓0.0 �0.02 double

throff Switch-off value ↓0.0 �0.01 double

dtime Minimum width of the output pulse [s] ↓0.0 �0.1 double

btime Minimum delay between two subsequent output pulses [s] to do
↓0.0 �0.1

double

RACT Reverse action flag bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

215

trun Motor time constant (determines the time during which the motor
position changes by one unit) ↓0.0 �10.0

double

216 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

SCUV – Step controller unit with velocity input

Block Symbol Licence: STANDARD

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV

Function Description
The block SCUV substitutes the secondary position controller SCU in the step controller
loop when the position signal is not available. The primary controller PIDU (or some of
the derived function blocks) is connected with the block SCUV using the block inputs mv,
dmv and SAT.

If the primary controller uses PI or PID control law (CWOI = off), then all three
inputs mv, dmv and SAT of the block SCUV are sequentially processed by the special
integration algorithm and by the three state element with parameters thron and throff

(see the TSE block, use parameters ep = thron, epoff = throff, en = -thron and
enoff = -throff). Pulse outputs of the three state element are further shaped in such
a way that the minimum pulse duration time dtime and minimum pulse break time
btime are guaranteed at the block outputs UP and DN. The parameter RACT determines
the direction of motor moving. Note, the velocity output of the primary controller is
reconstructed from input signals mv and dmv. Moreover, if the deviation error of the
primary controller with icotype = 4 (working in automatic mode) is less than its dead
zone (SAT = on), then the output of the corresponding internal integrator is set to zero.

The position pos of the valve is estimated by an integrator with the time constant
trun. If signals from high and low limit switches of the valve are available, they should
be connected to the inputs HS and LS.

If the primary controller uses P or PD control law (CWOI = on), then the deviation
error of the primary controller can be eliminated by the bias ub manually. In this case,
the control algorithm is slightly modified, the position of the motor pos is used and the
proper settings of thron, throff and the tracking time constant tt are necessary for the
suppressing of up/down pulses in the steady state.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position

217

increment/decrement request by the mdv input. In this case the request must be confirmed
by a rising edge (off→on) in the DVC input signal.

218 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

The overall control function of the SCUV block is obvious from the following diagram:

mv

dmv

MUP

MDN

MAN

HS

LS

UP

pos

DN

1

0

0

ub

CWOI

0

CWOI

−1

mdv

DVC

MR

0

MR
01

0

10

1

SAT

1

0

1

0

1

1

1 0

1

0
1

0

0

0

4

3

2

1

1

trun

1

tt

PWM

OR

OR

AND
NOT

AND
NOT

AND

s

1

s

1

diff

11

10

9

8

7

6

5

4

3

2

1

The complete structures of the three-state controllers are depicted in the following
figures:

Process ValueSetpoint

Valve Drive
MAN/AUT

Optional Connections

Primary controller with integration: I, PI, PID

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV
(CWOI=0)

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
(icotype=4)

UP

DN

y

HS

LS

MVD
Motorized

Valve Drive

u y

MDL
Process

Process ValueSetpoint

Valve Drive
MAN/AUT

Optional Connections

Manual Bias

Primary controller without integration: P, PD

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV
(CWOI=1)

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
(icotype=4)

UP

DN

y

HS

LS

MVD
Motorized

Valve Drive

u y

MDL
Process

Inputs
mv Manipulated variable (controller output) double

dmv Controller velocity output (difference) double

ub Bias (only for P or PD primary controller) double

219

SAT Internal integrator reset (connected to the SAT output of the primary
controller)

bool

HS Upper end switch (detects the upper limit position of the valve) bool

LS Lower end switch (detects the lower limit position of the valve) bool

MUP Manual UP signal bool

MDN Manual DN signal bool

mdv Manual differential value (requested position increment/decrement
with higher priority than direct signals MUP/MDN)

double

DVC Differential value change command (off→on) bool

MAN Manual or automatic mode bool

off . . . Automatic mode on Manual mode

Outputs
UP The "up" signal bool

DN The "down" signal bool

pos Position output of motor simulator double

MR Request to move the motor bool

off . . . Motor idle (UP = off and DN = off)
on Request to move (UP = on or DN = on)

Parameters
thron Switch-on value ↓0.0 �0.02 double

throff Switch-off value ↓0.0 �0.01 double

dtime Minimum width of the output pulse [s] ↓0.0 �0.1 double

btime Minimum delay between two subsequent output pulses [s]
↓0.0 �0.1

double

RACT Reverse action flag bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

trun Motor time constant (determines the time during which the motor
position changes by one unit) ↓0.0 �10.0

double

CWOI Controller without integration flag bool

off . . . The primary controller has an integrator (I, PI, PID)
on The primary controller does not have an integrator (P,

PD)
tt Tracking time constant ↓0.0 �1.0 double

220 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

SELU – Controller selector unit

Block Symbol Licence: STANDARD

u1
u2
u3
u4
iSW
SW1
SW2

y

U1

U2

U3

U4

SELU

Function Description
The SELU block is tailored for selecting the active controller in selector control. It chooses
one of the input signals u1, u2, u3, u4 and copies it to the output y. For BINF = off the
active signal is selected by the iSW input. In the case of BINF = on the selection is based
on the binary inputs SW1 and SW2 according to the following table:

iSW SW1 SW2 y U1 U2 U3 U4

0 off off u1 off on on on

1 off on u2 on off on on

2 on off u3 on on off on

3 on on u4 on on on off

This table also explains the meaning of the binary outputs U1, U2, U3 and U4, which
are used by the inactive controllers in selector control for tracking purposes (via the SWU

blocks).

Inputs
u1..u4 Signals to be selected from double

iSW Active signal selector in case of BINF = off long

SW1 Binary signal selector, used when BINF = on bool

SW2 Binary signal selector, used when BINF = on bool

Outputs
y Analog output of the block double

U1..U4 Binary output signal for selector control bool

221

Parameter
BINF Enable the binary selectors bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

222 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

SMHCC – Sliding mode heating/cooling controller

Block Symbol Licence: ADVANCED

sp

pv

hv

MAN

mv
mve

de
SAT

isv
t_ukp
t_ukm

t_sk
t_pv

t_dpv
t_d2pv

SMHCC

Function Description
The sliding mode heating/cooling controller SMHCC is a novel high quality control al-
gorithm intended for temperature control of heating-cooling (possibly asymmetrical)
processes with ON-OFF heaters and/or ON-OFF coolers. The plastic extruder is a typ-
ical example of such process. However, it can also be applied to many similar cases, for
example in thermal systems where a conventional thermostat is employed. To provide
the proper control function the block SMHCC must be combined with the block PWM (Pulse
Width Modulation) as depicted in the following figure.

sp

pv

hv

MAN

mv
mve

de
SAT

isv
t_ukp
t_ukm

t_sk
t_pv

t_dpv
t_d2pv

SMHCC

u
UP

DN

PWM

[cooler_contactor]

[heater_contactor]

[MAN_AUT_switch]

[hand_value]

[process_temperature]

[setpoint]

It is important to note that the block SMHCC works with two time periods. The first
period TS is the sampling time of the process temperature, and this period is equal
to the period with which the block SMHCC itself is executed. The second period TC =
ipwmcTS is the control period with which the block SMHCC generates manipulated variable.
This period TC is also equal to the cycle time of PWM block. At every instant when the
manipulated variable mv is changed by SMHCC the PWM algorithm recalculates the width
of the output pulse and starts a new PWM cycle. The time resolution TR of the PWM

block is third time period involved with. This period is equal to the period with which
the block PWM is run and generally may be different from TS . To achieve the high quality
of control it is recommended to choose TS as minimal as possible (ipwmc as maximal as
possible), the ratio TC/TS as maximal as possible but TC should be sufficiently small
with respect to the process dynamics. An example of reasonable values for an extruder

223

temperature control is as follows:

TS = 0.1, ipwmc = 100, TC = 10s, TR = 0.01s.

The control law of the block SMHCC in automatic mode (MAN = off) is based on the dis-
crete dynamic sliding mode control technique and special 3rd order filters for estimation
of the first and second derivatives of the control error.

The first control stage, after a setpoint change or upset, is the reaching phase when
the dynamic sliding variable

sk
4
= ëk + 2ξΩėk +Ω2ek

is forced to zero. In the above definition of the sliding variable, ek, ėk, ëk denote the
filtered deviation error (pv−sp) and its first and second derivatives in the control period
k, respectively, and ξ,Ω are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and vice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee sk = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s
4
= ë+ 2ξΩė+Ω2e

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order differential equation

s
4
= ë+ 2ξΩė+Ω2e = 0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters ξ,Ω. For stable behavior, it must hold ξ > 0,Ω > 0.
A typical optimal value of ξ ranges in the interval [4, 8] and ξ about 6 is often a satis-
factory value. The optimal value of Ω strongly depends on the controlled process. The
slower processes the lower optimal Ω. The recommended value of Ω for start of tuning
is π/(5TC).
The manipulated variable mv usually ranges in the interval [−1, 1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p

and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is significant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude u0_p (u0_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set u0_p = hilim_p and u0_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the

224 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

sign of sk alternately changes its value. In such a case the controller output isv alternates
the values 1 and −1. The rate of adaptation of the heating (cooling) amplitude is given
by the time constant taup (taum). Both of these time constants have to be sufficiently
high to provide the proper function of adaptation but the fine tuning is not necessary.
Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sk < 0.0) then mv = uk_p else mv = −uk_m.

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary fine tuning is required then it may be tried to
find the better value for the bandwidth parameter beta of derivative filter, otherwise the
default value 0.1 is preferred. In the manual mode (MAN = on) the controller input hv is
(after limitation to the range [−hilim_m, hilim_p]) copied to the manipulated variable
mv.

Inputs
sp setpoint variable double

pv process variable double

hv manual value double

MAN controller mode bool

0 automatic mode 1 manual mode

Outputs
mv manipulated variable (position controller output) double

mve equivalent manipulated variable double

de deviation error double

SAT saturation flag bool

0 the controller implements a linear control law
1 the controller output is saturated, mv ≥ hilim_p or mv ≤

-hilim_m

isv number of the positive (+) or negative (−) sliding variable steps long

t_ukp current amplitude of heating double

t_ukm current amplitude of cooling double

t_sk discrete dynamic sliding variable sk double

t_pv filtered control error -de double

t_dpv filtered first derivative of the control error t_ek double

t_d2pv filtered second derivative of the control error t_ek double

Parameters
ipwmc PWM cycle in the sampling periods of SMHCC (TC/TS) long

xi relative damping ξ of sliding zero dynamics xi ≥ 0 double

225

om natural frequency Ω of sliding zero dynamics ↓(0.0) double

taup time constant for adaptation of heating action amplitude in seconds double

taum time constant for adaptation of cooling action amplitude in seconds double

beta bandwidth parameter of the derivative filter ↓0 double

hilim_p high limit of the heating action amplitude ↓0.0 ↑1.0 double

hilim_m high limit of the cooling action amplitude ↓0.0 ↑1.0 double

u0_p initial value of the heating action amplitude after setpoint change and
start of the block

double

u0_m initial value of the cooling action amplitude after setpoint change and
start of the block

double

sp_dif Setpoint difference threshold �10.0 double

tauf Equivalent manipulated variable filter time constant �400.0 double

226 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

SMHCCA – Sliding mode heating/cooling controller with auto-
tuner

Block Symbol Licence: AUTOTUNING

sp

pv

hv

MAN

TMODE

TUNE

TBRK

TAFF

ips

mv
mve

de
SAT

isv
t_ukp
t_ukm

t_sk
t_pv

t_dpv
t_d2pv
TBSY

TE
ite
p1
p2
p3
p4
p5
p6

SMHCCA

Function Description
The sliding mode heating/cooling controller (SMHCCA) is a novel high quality control
algorithm with a built-in autotuner for automatic tuning of the controller parameters.
The controller is mainly intended for temperature control of heating-cooling (possibly
asymmetrical) processes with ON-OFF heaters and/or ON-OFF coolers. The plastic
extruder heating/cooling system is a typical example of such process. However, it can also
be applied to many similar cases, for example, to thermal systems where a conventional
thermostat is normally employed. To provide the proper control function, the SMHCCA

block must be combined with the PWM block (Pulse Width Modulation) as depicted in
the following figure.

sp

pv

hv

MAN

TMODE

TUNE

TBRK

TAFF

ips

mv
mve

de
SAT

isv
t_ukp
t_ukm

t_sk
t_pv

t_dpv
t_d2pv
TBSY

TE
ite
p1
p2
p3
p4
p5
p6

SMHCCA

u
UP

DN

PWM

[cooler_contactor]

[heater_contactor][setpoint]

[process_temperature]

[hand_value]

[MAN_AUT_switch]

[tuning_mode]

[start_of_tuning]

[tuning_break]

[affirmation_of_parameters]

[selection_of_parameter_set]

It is important to note that the block SMHCCA works with two time periods. The first
period TS is the sampling time of the process temperature, and this period is equal to the

227

period with which the block SMHCCA itself is executed. The other period TC = ipwmcTS is
the control period with which the block SMHCCA generates the manipulated variable. This
period TC is equal to the cycle time of PWM block. At every instant when the manipulated
variable mv is changed by SMHCCA the PWM algorithm recalculates the width of the output
pulse and starts a new PWM cycle. The time resolution TR of the PWM block is third
time period involved in. This period is equal to the period with which the block PWM is
executed and generally may be different from TS . To achieve the high quality of control
it is recommended to choose TS as minimal as possible (ipwmc as maximal as possible),
the ratio TC/TS as maximal as possible but TC should be sufficiently small with respect
to the process dynamics. An example of reasonable values for an extruder temperature
control is as follows:

TS = 0.1, ipwmc = 50, TC = 5s, TR = 0.1s.

Notice however that for a faster controlled system the sampling periods TS , TC and
TR must be shortened! More precisely, the three minimal time constant of the process
are important for selection of these time periods (all real thermal process has at least
three time constants). For example, the sampling period TS = 0.1 is sufficiently short for
such processes that have at least three time constants, the minimal of them is greater
than 10s and the maximal is greater than 100s. For the proper function of the controller
it is necessary that these time parameters are suitably chosen by the user according
to the actual dynamics of the process! If SMHCCA is implemented on a processor with
floating point arithmetic then the accurate setting of the sampling periods TS , TC , TR

and the parameter beta is critical for correct function of the controller. Also, some other
parameters with the clear meaning described below have to be chosen manually. All the
remaining parameters (xi, om, taup, taum, tauf) can be set by the built-in autotuner
automatically. The autotuner uses the two methods for this purpose.

• The first one is dedicated to situations where the asymmetry of the process is
not enormous (approximately, it means that the gain ratio of heating/cooling or
cooling/heating is less than 5).

• The second method provides the tuning support for the strong asymmetric pro-
cesses and is not implemented yet (So far, this method has been developed and
tested in Simulink only).

Despite the fact that the first method of the tuning is based only on the heating
regime, the resulting parameters are usually satisfactory for both heating and cooling
regimes because of the strong robustness of sliding mode control. The tuning proce-
dure is very quick and can be accomplished during the normal rise time period of the
process temperature from cold state to the setpoint usually without any temporization
or degradation of control performance. Thus the tuning procedure can be included in
every start up from cold state to the working point specified by the sufficiently high
temperature setpoint. Now the implemented procedure will be described in detail. The
tuning procedure starts in the tuning mode or in the manual mode. If the tuning mode

228 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

(TMODE = on) is selected the manipulated variable mv is automatically set to zero and
the output TBSY is set to 1 for indication of the tuning stage of the controller. The cold
state of the process is preserved until the initialization pulse is applied to the input TUNE
(0 → 1). After some time (depending on beta), when the noise amplitude is estimated,
the heating is switched on with the amplitude given by the parameter ut_p. The process
temperature pv and its two derivatives (outputs t_pv, t_dpv, t_d2pv) are observed to
obtain the optimal parameters of the controller. If the tuning procedure ends without
errors, then TBSY is set to 0 and the controller begins to work in manual or automatic
mode according to the input MAN. If MAN = off and affirmation input TAFF is set to 1,
then the controller starts to work in automatic mode with the new parameter set pro-
vided by the tuner (if TAFF = off, then the new parameters are only displayed on the
outputs p1..p6). If some error occurs during the tuning, then the tuning procedure stops
immediately or stops after the condition pv>sp is fulfilled, the output TE is set to 1 and
ite indicate the type of error. Also in this case, the controller starts to work in the mode
determined by the input MAN. If MAN = off then works in automatic mode with the initial
parameters before tuning! The tuning errors are usually caused either by an inappropri-
ate setting of the parameter beta or by the too low value of sp. The suitable value of
beta ranges in the interval (0.001,0.1). If a drift and noise in pv are large the small beta
must be chosen especially for the tuning phase. The default value (beta=0.01) should
work well for extruder applications. The correct value gives properly filtered signal of
the second derivative of the process temperature t_d2pv. This well-filtered signal (cor-
responding to the low value of beta) is mainly necessary for proper tuning. For control,
the parameter beta may be sometimes slightly increased. The tuning procedure may be
also started from manual mode (MAN = off) with any constant value of the input hv.
However, the steady state must be provided in this case. Again, the tuning is started
by the initialization pulse at the input TUNE (0 → 1) and after the stop of tuning the
controller continues in the manual mode. In both cases the resulting parameters appear
on the outputs p1,...,p6.

229

The control law of the block SMHCCA in automatic mode (MAN = off) is based on
the discrete dynamic sliding mode control technique and special 3rd order filters for
estimation of the first and second derivatives of the control error.

The first control stage, after a setpoint change or upset, is the reaching phase when
the dynamic sliding variable

sk
4
= ëk + 2ξΩėk +Ω2ek

is forced to zero. In the above definition of the sliding variable, ek, ėk, ëk denote the
filtered deviation error (pv−sp) and its first and second derivatives in the control period

230 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

k, respectively, and ξ,Ω are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and vice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee sk = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s
4
= ë+ 2ξΩė+Ω2e

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order differential equation

s
4
= ë+ 2ξΩė+Ω2e = 0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters ξ,Ω. For stable behavior, it must hold ξ > 0,Ω >
0. A typical optimal value of ξ ranges in the interval [4, 8] and ξ about 6 is often a
satisfactory value. The optimal value of Ω strongly depends on the controlled process.
The slower processes the lower optimal Ω. The recommended value of Ω for start of
tuning is π/(5TC).

The manipulated variable mv usually ranges in the interval [−1, 1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p

and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is significant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude u0_p (u0_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set u0_p = hilim_p and u0_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the
sign of sk alternately changes its value. In such a case the controller output isv alter-
nates the values 1 and −1. The rate of adaptation of the heating (cooling) amplitude is
given by time constant taup (taum). Both of these time constants have to be sufficiently
high to provide the proper function of adaptation but the fine tuning is not necessary.
Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sk < 0.0) then mv = uk_p else mv = −uk_m.

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary fine tuning is required then it may be tried
to find the better value for the bandwidth parameter beta of derivative filter, otherwise
the default value 0.1 is preferred.

231

In the manual mode (MAN = on) the controller input hv is (after limitation to the
range [−hilim_m, hilim_p]) copied to the manipulated variable mv. The controller output
mve provides the equivalent amplitude-modulated value of the manipulated variable mv

for informative purposes. The output mve is obtained by the first order filter with the
time constant tauf applied to mv.

Inputs
sp Setpoint variable double

pv Process variable double

hv Manual value double

MAN Manual or automatic mode bool

0 Automatic mode 1 Manual mode
TMODE Tuning mode bool

TUNE Start the tuning experiment: TUNE off→on bool

TBRK Stop the tuning experiment: TBRK off→on bool

TAFF Affirmation of the parameter set provided by the tuning procedure:
TAFF = on

bool

ips Meaning of the output signals p1,. . . ,p6 long

0 Controller parameters
p1 . . . recommended control period TC

p2 . . . xi

p3 . . . om

p4 . . . taup

p5 . . . taum

p6 . . . tauf

1 Auxiliary parameters
p1 . . . htp2 – time of the peak in the second derivative of
pv

p2 . . . hpeak2 – peak value in the second derivative of pv
p3 . . . d2 – peak to peak amplitude of t_d2pv
p4 . . . tgain

Outputs
mv Manipulated variable (controller output) double

mve Equivalent manipulated variable double

de Deviation error double

SAT Saturation flag bool

0 Signal not limited
1 Saturation limits active, mv ≥ hilim_p or mv ≤ -hilim_m

isv Number of the positive (+) or negative (−) sliding variable steps long

t_ukp Current amplitude of heating double

t_ukm Current amplitude of cooling double

t_sk Discrete dynamic sliding variable double

t_pv Filtered process variable pv by 3rd order filter double

232 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

t_dpv Filtered first derivative of pv by 3rd order filter double

t_d2pv Filtered second derivative of pv by 3rd order filter double

TBSY Tuner busy flag (TBSY = on) bool

TE Tuning error bool

off . . . Autotuning successful
on An error occured during the experiment

ite Error code long

0 No error
1 Noise level in pv too high, check the temperature input
2 Incorrect parameter ut_p
3 Setpoint sp too low
4 The two minimal process time constants are probably too

small with respect to the sampling period TS OR too high
level of noise in the second derivative of pv (try to decrease
the beta parameter)

5 Premature termination of the tuning procedure (TBRK)
pi Identified parameters with respect to ips, i = 1, ..., 6 double

Parameters
ipwmc PWM cycle (in sampling periods of the block, TC/TS) �100 long

xi Relative damping of sliding zero dynamics ↓0.5↑8.0�1.0 double

om Natural frequency ω of sliding zero dynamics ↓0.0�0.01 double

taup Time constant for adaptation of heating action amplitude [s]
�700.0

double

taum Time constant for adaptation of cooling action amplitude [s] �400.0 double

beta Bandwidth parameter of the derivative filter �0.01 double

hilim_p Upper limit of the heating action amplitude ↓0.0 ↑1.0 �1.0 double

hilim_m Upper limit of the cooling action amplitude ↓0.0 ↑1.0 �1.0 double

u0_p Initial amplitude of the heating action �1.0 double

u0_m Initial amplitude of the cooling action �1.0 double

sp_dif Setpoint difference threshold for blocking of heating/cooling
amplitudes reset �10.0

double

tauf Time constant of the filter for obtaining the equivalent manipulated
variable �400.0

double

itm Tuning method �1 long

1 Restricted to symmetrical processes
2 Asymmetrical processes (not implemented yet)

ut_p Amplitude of heating for tuning experiment ↓0.0 ↑1.0 �1.0 double

ut_m Amplitude of cooling for tuning experiment ↓0.0 ↑1.0 �1.0 double

233

SWU – Switch unit

Block Symbol Licence: STANDARD

uc
uo
OR1
OR2
OR3
OR4

y

SWU

Function Description
The SWU block is used to select the appropriate signal which should be tracked by the
inactive PIDU and MCU units in complex control structures. The input signal uc is copied
to the output y when all the binary inputs OR1, . . . , OR4 are off, otherwise the output
y takes over the uo input signal.

Inputs
uc This input is copied to output y when all the binary inputs OR1, OR2,

OR3 and OR4 are off

double

uo This input is copied to output y when any of the binary inputs OR1,
OR2, OR3, OR4 is on

double

OR1 First logical output of the block bool

OR2 Second logical output of the block bool

OR3 Third logical output of the block bool

OR4 Fourth logical output of the block bool

Output
y Analog output of the block double

234 CHAPTER 7. REG – FUNCTION BLOCKS FOR CONTROL

TSE – Three-state element

Block Symbol Licence: STANDARD

u UP
DN

TSE

Function Description
The TSE block transforms the analog input u to a three-state signal ("up", "idle" and
"down") according to the diagram below.

Input
u Analog input of the block double

Outputs
UP The "up" signal bool

DN The "down" signal bool

Parameters
ep The input value u > ep results in UP = on and DN = off �1.0 double

en The input value u < en results in UP = off and DN = off �-1.0 double

epoff UP switch off value; if UP = on and u < epoff then UP = off �0.5 double

enoff DN switch off value; if DN = on and u > enoff then DN = off �-0.5 double

Chapter 8

LOGIC – Logic control

Contents
AND_ – Logical product of two signals 236
ANDQUAD, ANDOCT, ANDHEXD – Logical product of multiple signals . . 237
ATMT – Finite-state automaton . 238
BDOCT, BDHEXD – Bitwise demultiplexers 241
BITOP – Bitwise operation . 242
BMOCT, BMHEXD – Bitwise multiplexers 243
COUNT – Controlled counter . 244
EATMT – Extended finite-state automaton 246
EDGE_ – Falling/rising edge detection in a binary signal 249
INTSM – Integer number bit shift and mask 250
ISSW – Simple switch for integer signals 251
INTSM – Integer number bit shift and mask 252
ITOI – Transformation of integer and binary numbers 253
NOT_ – Boolean complementation 255
OR_ – Logical sum of two signals . 256
ORQUAD, OROCT, ORHEXD – Logical sum of multiple signals 257
RS – Reset-set flip-flop circuit . 258
SR – Set-reset flip-flop circuit . 259
TIMER_ – Multipurpose timer . 260

235

236 CHAPTER 8. LOGIC – LOGIC CONTROL

AND_ – Logical product of two signals

Block Symbol Licence: STANDARD

U1
U2

Y
NY

AND_

Function Description
The AND_ block computes the logical product of two input signals U1 and U2.

If you need to work with more input signals, use the ANDOCT block.

Inputs
U1 First logical input of the block bool

U2 Second logical input of the block bool

Outputs
Y Output signal, logical product (U1 ∧ U2) bool

NY Boolean complementation of Y (NY = ¬Y) bool

237

ANDQUAD, ANDOCT, ANDHEXD – Logical product of multiple signals

Block Symbols Licence: STANDARD

U1
U2
U3
U4

Y

NY

ANDQUAD

U1
U2
U3
U4
U5
U6
U7
U8

Y

NY

ANDOCT

U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15
U16

Y

NY

ANDHEXD

Function Description
The ANDQUAD, ANDOCT and ANDHEXD blocks compute the logical product of up to sixteen
input signals U1, U2, . . . , U16. The signals listed in the nl parameter are negated prior
to computing the logical product.

For an empty nl parameter a simple logical product Y = U1∧U2∧U3∧U4∧U5∧U6∧
U7 ∧ U8 is computed. For e.g. nl=1,3..5, the logical function is Y = ¬U1 ∧ U2 ∧ ¬U3 ∧
¬U4 ∧ ¬U5 ∧ U6 ∧ . . . U16.

If you have less than 4/8/16 signals, use the nl parameter to handle the unconnected
inputs. If you have only two input signals, consider using the AND_ block.

Inputs
U1..U16 Logical inputs of the block bool

Outputs
Y Result of the logical operation bool

NY Boolean complementation of Y bool

Parameter
nl List of signals to negate. The format of the list is e.g. 1,3..5,8.

Third-party programs (Simulink, OPC clients etc.) work with an
integer number, which is a binary mask, i.e. 157 (binary 10011101)
in the mentioned case.

long

238 CHAPTER 8. LOGIC – LOGIC CONTROL

ATMT – Finite-state automaton

Block Symbol Licence: STANDARD

R1
ns0
SET
HLD
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13
Q14
Q15
ksa

tstep
TOUT

ATMT

Function Description
The ATMT block implements a finite state machine with at most 16 states and 16 transition
rules.

The current state of the machine i, i = 0, 1, . . . , 15 is indicated by the binary outputs
Q0, Q1, . . . , Q15. If the state i is active, the corresponding output is set to Qi=on. The
current state is also indicated by the ksa output (ksa ∈ {0, 1, . . . , 15}).

The transition conditions Ck, k = 0, 1, . . . , 15 are activated by the binary inputs C0,
C1, . . . , C15. If Ck = on the k-th transition condition is fulfilled. The transition cannot
happen when Ck = off.

The automat function is defined by the following table of transitions:

S1 C1 FS1
S2 C2 FS2

. . .
Sn Cn FSn

Each row of this table represents one transition rule. For example the first row

S1 C1 FS1

has the meaning

If (S1 is the current state AND transition condition C1 is fulfilled)
then proceed to the following state FS1.

239

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state S0. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The
R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the Ci input signals and the tstep

timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits TOi for individual states are defined
by the touts array. There is no time limit for the given state when TOi is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT

output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REX Control System include also the SFCEditor pro-
gram. You can create SFC schemes graphically using this tool. Run this editor from
RexDraw by clicking the Configure button in the parameter dialog of the ATMT block.

Inputs
R1 Reset signal, R1 = on brings the automat to the initial state S0; the

R1 input overpowers the SET input
bool

ns0 This state is reached when rising edge occurs at the the SET input long

SET The rising edge of this signal forces the transition to the ns0 state bool

HLD The HLD = on freezes the automat, no transitions occur regardless of
the input signals, tstep is not increasing

bool

C0...C15 The transition conditions; Ci = on means that the i-th condition was
fulfilled and the corresponding transition rule can be executed

bool

Outputs
Q0...Q15 Output signals indicating the current state of the automat; the current

state i is indicated by Qi = on

bool

ksa Integer code of the active state long

tstep Time elapsed since the current state was reached; the timer is set to
0 whenever a state transition occurs

double

TOUT Flag indicating that the time limit for the current state was exceeded bool

Parameters
morestps Allow multiple transitions in one cycle of the automat bool

off . . . Disabled
on Enabled

ntr Number of state transition table rows ↓0 ↑64 �4 long

240 CHAPTER 8. LOGIC – LOGIC CONTROL

sfcname Filename of block configurator data file (filename is generated by
system if parameter is empty)

string

STT State transition table (matrix) �[0 0 1; 1 1 2; 2 2 3; 3 3 0] byte

touts Vector of timeouts TO0, TO1, . . . , TO15 for the states S0, S1, . . . ,
S15 �[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

double

241

BDOCT, BDHEXD – Bitwise demultiplexers

Block Symbols Licence: STANDARD

iu

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

BDOCT

iu

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9

Y10
Y11
Y12
Y13
Y14
Y15

BDHEXD

Function Description
Both BDOCT and BDHEXD are bitwise demultiplexers for easy decomposition of the input
signal to individual bits. The only difference is the number of outputs, the BDOCT block
has 8 Boolean outputs while the BDHEXD block offers 16-bit decomposition. The output
signals Yi correspond with the individual bits of the input signal iu, the Y0 output is the
least significant bit.

Input
iu Input signal to be decomposed long

Outputs
Y0...Y15 Individual bits of the input signal bool

Parameter
shift Bit shift of the input signal ↓0 ↑31 long

242 CHAPTER 8. LOGIC – LOGIC CONTROL

BITOP – Bitwise operation

Block Symbol Licence: STANDARD

i1
i2 n

BITOP

Function Description
The BITOP block performs bitwise operation i1 ◦ i2 on the signals i1 and i2, resulting
in an integer output n. The type of operation is selected by the iop parameter described
below. In case of logical negation or 2’s complements the input i2 is ignored (i.e. the
operation is unary).

Inputs
i1 First integer input of the block long

i2 Second integer input of the block long

Output
n Result of the bitwise operation iop long

Parameter
iop Bitwise operation �1 long

1 Bitwise negation (Bit NOT)
2 Bitwise logical sum (Bit OR)
3 Bitwise logical product (Bit AND)
4 Bitwise logical exclusive sum (Bit XOR)
5 Shift of the i1 signal by i2 bits to the left (Shift Left)
6 Shift of the i1 signal by i2 bits to the right (Shift Right)
7 2’s complement of the i1 signal on 8 bits (2’s

Complement - Byte)
8 2’s complement of the i1 signal on 16 bits (2’s

Complement - Word)
9 2’s complement of the i1 signal on 32 bits (2’s

Complement - Long)

243

BMOCT, BMHEXD – Bitwise multiplexers

Block Symbols Licence: STANDARD

U0
U1
U2
U3
U4
U5
U6
U7

iy

BMOCT

U0
U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15

iy

BMHEXD

Function Description
Both BMOCT and BMHEXD are bitwise multiplexers for easy composition of the output
signal from individual bits. The only difference is the number of inputs, the BMOCT block
has 8 Boolean inputs while the BMHEXD block offers 16-bit composition. The input signals
Ui correspond with the individual bits of the output signal iy, the U0 input is the least
significant bit.

Inputs
U0...U15 Individual bits of the output signal bool

Output
iy Composed output signal long

Parameter
shift Bit shift of the output signal ↓0 ↑31 long

244 CHAPTER 8. LOGIC – LOGIC CONTROL

COUNT – Controlled counter

Block Symbol Licence: STANDARD

R1
n0
SETH
UP
DN
HLD
nmax

cnt

SGN

Q

E

COUNT

Function Description
The COUNT block is designed for bidirectional pulse counting – more precisely, counting
rising edges of the UP and DN input signals. When a rising edge occurs at the UP (DN)
input, the cnt output is incremented (decremented) by 1. Simultaneous occurrence of
rising edges at both inputs is indicated by the error output E set to on. The R1 input
resets the counter to 0 and no addition or subtraction is performed unless the R1 input
returns to off again. It is also possible to set the output cnt to the value n0 by the SETH

input. Again, no addition or subtraction is performed unless the SETH input returns to off
again. The R1 input has higher priority than the SETH input. The input HLD = on prevents
both incrementing and decrementing. When the counter reaches the value cnt ≥ nmax,
the Q output is set to on.

Inputs
R1 Block reset (R1 = on) bool

n0 Value to set the counter to (using the SETH input) long

SETH Set the counter value to n0 (SETH = on) bool

UP Incrementing input signal bool

DN Decrementing input signal bool

HLD Counter freeze bool

off . . . Counter is running
on Counter is locked

nmax Counter target value long

Outputs
cnt Total number of pulses long

SGN Sign of the cnt output bool

off . . . for cnt ≤ 0
on for cnt > 0

245

Q Target value indicator bool

off . . . for cnt < nmax

on for cnt ≥ nmax

E Indicator of simultaneous occurrence of rising edges at both inputs UP
and DN

bool

246 CHAPTER 8. LOGIC – LOGIC CONTROL

EATMT – Extended finite-state automaton

Block Symbol Licence: ADVANCED

R1
ns0
SET
HLD
c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15

q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

q10
q11
q12
q13
q14
q15
ksa

tstep
TOUT

EATMT

Function Description
The EATMT block implements a finite automat with at most 256 states and 256 transition
rules, thus it extends the possibilities of the ATMT block.

The current state of the automat i, i = 0, 1, . . . , 255 is indicated by individual bits
of the integer outputs q0, q1, . . . , q15. Only a single bit with index iMOD 16 of the
q(iDIV 16) output is set to 1. The remaining bits of that output and the other outputs
are zero. The bits are numbered from zero, least significant bit first. Note that the
DIV and MOD operators denote integer division and remainder after integer division
respectively. The current state is also indicated by the ksa ∈ {0, 1, . . . , 255} output.

The transition conditions Ck, k = 0, 1, . . . , 255) are activated by individual bits of the
inputs c0, c1, . . . , c15. The k-th transition condition is fulfilled when the (kMOD 16)-th
bit of the input c(kDIV 16) is equal to 1. The transition cannot happen otherwise.

The BMHEXD or BMOCT bitwise multiplexers can be used for composition of the input
signals c0, c1, . . . , c15 from individual Boolean signals. Similarly the output signals q0,
q1, . . . , q15 can be decomposed using the BDHEXD or BDOCT bitwise demultiplexers.

The automat function is defined by the following table of transitions:

S1 C1 FS1
S2 C2 FS2

. . .
Sn Cn FSn

Each row of this table represents one transition rule. For example the first row

S1 C1 FS1

247

has the meaning

If (S1 is the current state AND transition condition C1 is fulfilled)
then proceed to the following state FS1.

The above described meaning of the table row holds for C1 < 1000. Negation of the
(C1− 1000)-th transition condition is assumed for C1 ≥ 1000.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state S0. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The
R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the ci input signals and the tstep

timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits TOi for individual states are defined
by the touts array. There is no time limit for the given state when TOi is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT

output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REX Control System include also the SFCEditor pro-
gram. You can create SFC schemes graphically using this tool. Run this editor from
RexDraw by clicking the Configure button in the parameter dialog of the EATMT block.

Inputs
R1 Reset signal, R1 = on brings the automat to the initial state S0; the

R1 input overpowers the SET input
bool

ns0 This state is reached when rising edge occurs at the the SET input long

SET The rising edge of this signal forces the transition to the ns0 state bool

HLD The HLD = on freezes the automat, no transitions occur regardless of
the input signals, tstep is not increasing

bool

c0...c15 Transition conditions, each input signal contains 16 transition
conditions, see details above

Outputs
q0...q15 Output signals indicating the current state of the automat, see details

above
long

ksa Integer code of the active state long

tstep Time elapsed since the current state was reached; the timer is set to
0 whenever a state transition occurs

double

TOUT Flag indicating that the time limit for the current state was exceeded bool

248 CHAPTER 8. LOGIC – LOGIC CONTROL

Parameters
morestps Allow multiple transitions in one cycle of the automat bool

off . . . Disabled
on Enabled

ntr Number of state transition table rows ↓0 ↑1024 �4 long

sfcname Filename of block configurator data file (filename is generated by
system if parameter is empty)

string

STT State transition table (matrix) �[0 0 1; 1 1 2; 2 2 3; 3 3 0] short

touts Vector of timeouts TO0, TO1, . . . , TO255 for the states S0, S1, . . . ,
S255 �[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

double

249

EDGE_ – Falling/rising edge detection in a binary signal

Block Symbol Licence: STANDARD

U Y

EDGE_

Function Description
The EDGE_ block detects rising (off→on) and/or falling (on→off) edges in the binary
input signal U. The type of edges to detect is determined by the iedge parameter. As
long as the input signal remains constant, the output Y is off. In the case when an edge
corresponding with the iedge parameter is detected, the output Y is set to on for one
sampling period.

Input
U Logical input of the block bool

Output
Y Logical output of the block bool

Parameter
iedge Type of edges to detect �1 long

1 Rising edge
2 Falling edge
3 Both edges

250 CHAPTER 8. LOGIC – LOGIC CONTROL

INTSM – Integer number bit shift and mask

Block Symbol Licence: STANDARD

i n

INTSM

Function Description
The INTSM block performs bit shift of input value i by shift bits right (if shift is
positive) or left (if shift is negative). Free space resulting from shifting is filled with
zeros.

Output value n is calculated as bitwise AND of shifted input i and bit mask mask.
Typical application of this block is extraction of one or more adjacent bits from a

given position in integer register which was read from some external system.

Input
i Integer value to shift and mask long

Parameters
shift Bit shift (negative=left, positive=right) ↓-31 ↑31 long

mask Bit mask (applied after bit shift) ↓XXX ↑XXX �XXX dword

Output
n Resulting integer value long

251

ISSW – Simple switch for integer signals

Block Symbol Licence: STANDARD

i1
i2
SW

n

ISSW

Function Description
The ISSW block is a simple switch for integer input signals i1 and i2 whose decision
variable is the binary input SW. If SW is off, then the output n is equal to the i1 signal.
If SW is on, then the output n is equal to the i2 signal.

Inputs
i1 First integer input of the block long

i2 Second integer input of the block long

SW Signal selector bool

off . . . The i1 signal is selected
on The i2 signal is selected

Output
n Integer output of the block long

252 CHAPTER 8. LOGIC – LOGIC CONTROL

INTSM – Integer number bit shift and mask

Block Symbol Licence: STANDARD

i n

INTSM

Function Description
The INTSM block performs bit shift of input value i by shift bits right (if shift is
positive) or left (if shift is negative). Free space resulting from shifting is filled with
zeros.

Output value n is calculated as bitwise AND of shifted input i and bit mask mask.
Typical application of this block is extraction of one or more adjacent bits from a

given position in integer register which was read from some external system.

Input
i Integer value to shift and mask long

Parameters
shift Bit shift (negative=left, positive=right) ↓-31 ↑31 long

mask Bit mask (applied after bit shift) ↓XXX ↑XXX �XXX dword

Output
n Resulting integer value long

253

ITOI – Transformation of integer and binary numbers

Block Symbol Licence: STANDARD

k
U0
U1
U2
U3

nk
Y0
Y1
Y2
Y3

ITOI

Function Description
The ITOI block transforms the input number k, or the binary number (U3 U2 U1 U0)2,
from the set {0, 1, 2, . . . , 15} to the output number nk and its binary representation
(Y3 Y2 Y1 Y0)2 from the same set. The transformation is described by the following table

k 0 1 2 . . . 15

nk n0 n1 n2 . . . n15

where n0, . . . , n15 are given by the mapping table target vector fktab.
If BINF = off, then the integer input k is active, while for BINF = on the input is

defined by the binary inputs (U3 U2 U1 U0)2.

Inputs
k Integer input of the block long

U0 Binary input digit, weight of 1 bool

U1 Binary input digit, weight of 2 bool

U2 Binary input digit, weight of 4 bool

U3 Binary input digit, weight of 8 bool

Outputs
nk Integer output of the block long

Y0 Binary output digit, weight of 1 bool

Y1 Binary output digit, weight of 2 bool

Y2 Binary output digit, weight of 4 bool

Y3 Binary output digit, weight of 8 bool

Parameters
BINF Enable the binary selectors �on bool

off . . . Disabled (integer input k)
on Enabled (binary input signals U3. . . U0)

254 CHAPTER 8. LOGIC – LOGIC CONTROL

fktab Vector of mapping table target values
�[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

byte

255

NOT_ – Boolean complementation

Block Symbol Licence: STANDARD

U Y

NOT_

Function Description
The NOT block negates the input signal.

Input
U Logical input of the block bool

Output
Y Logical output of the block (Y = ¬U) bool

256 CHAPTER 8. LOGIC – LOGIC CONTROL

OR_ – Logical sum of two signals

Block Symbol Licence: STANDARD

U1
U2

Y
NY

OR_

Function Description
The OR block computes the logical sum of two input signals U1 and U2.

If you need to work with more input signals, use the OROCT block.

Inputs
U1 First logical input of the block bool

U2 Second logical input of the block bool

Outputs
Y Logical output of the block (U1 ∨ U2) bool

NY Boolean complementation of Y (NY = ¬Y) bool

257

ORQUAD, OROCT, ORHEXD – Logical sum of multiple signals

Block Symbols Licence: STANDARD

U1
U2
U3
U4

Y

NY

ORQUAD

U1
U2
U3
U4
U5
U6
U7
U8

Y

NY

OROCT

U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15
U16

Y

NY

ORHEXD

Function Description
The ORQUAD, OROCT and ORHEXD blocks compute the logical sum of up to sixteen input
signals U1, U2, . . . , U16. The signals listed in the nl parameter are negated prior to
computing the logical sum.

For an empty nl parameter a simple logical sum Y = U1 ∨ U2 ∨ U3 ∨ U4 ∨ U5 ∨ U6 ∨
U7 ∨ . . . ∨ U16 is computed. For e.g. nl=1,3..5, the logical function is Y = ¬U1 ∨ U2 ∨
¬U3 ∨ ¬U4 ∨ ¬U5 ∨ U6 ∨ . . . ∨ U16.

If you have only two input signals, consider using the OR_ block.

Inputs
U1..U16 Logical inputs of the block bool

Outputs
Y Result of the logical operation bool

NY Boolean complementation of Y bool

Parameter
nl List of signals to negate. The format of the list is e.g. 1,3..5,8.

Third-party programs (Simulink, OPC clients etc.) work with an
integer number, which is a binary mask, i.e. 157 (binary 10011101)
in the mentioned case.

long

258 CHAPTER 8. LOGIC – LOGIC CONTROL

RS – Reset-set flip-flop circuit

Block Symbol Licence: STANDARD

S
R1

Q
NQ

RS

Function Description
The RS block is a flip-flop circuit, which sets its output permanently to on as soon as
the input signal S is equal to on. The other input signal R1 resets the Q output to off

even if the S input is on. The NQ output is simply the negation of the signal Q.
The block function is evident from the inner block structure depicted below.

2

NQ

1

Q

U1
U2

Y
NY

OR

U Y

NOT

U1
U2

Y
NY

AND2

R1

1

S

Inputs
S Flip-flop set, sets the Q output to on bool

R1 Priority flip-flop reset, sets the Q output to off, overpowers the S

input
bool

Outputs
Q Flip-flop circuit state bool

NQ Boolean complementation of Q bool

259

SR – Set-reset flip-flop circuit

Block Symbol Licence: STANDARD

S1
R

Q
NQ

SR

Function Description
The SR block is a flip-flop circuit, which sets its output permanently to on as soon as
the input signal S1 is on. The other input signal R resets the Q output to off, but only
if the S1 input is off. The NQ output is simply the negation of the signal Q.

The block function is evident from the inner block structure depicted below.

2

NQ

1

QU1
U2

Y
NY

ORU Y

NOT

U1
U2

Y
NY

AND

2

R

1

S1

Inputs
S1 Priority flip-flop set, sets the Q output to on, overpowers the R input bool

R Flip-flop reset, sets the Q output to off bool

Outputs
Q Flip-flop circuit state bool

NQ Boolean complementation of Q bool

260 CHAPTER 8. LOGIC – LOGIC CONTROL

TIMER_ – Multipurpose timer

Block Symbol Licence: STANDARD

U
HLD
R1

Q
et
rt

TIMER_

Function Description
The TIMER_ block either generates an output pulse of the given width pt (in seconds)
or filters narrow pulses in the U input signal whose width is less than pt seconds. The
operation mode is determined by the mode parameter. The timer can be paused by the
HLD input.

The graph illustrates the behaviour of the block in individual modes for pt = 3:

0 2 3 4 5 7 9 10 11 13 14 15

mode 4

mode 3

mode 2

mode 1

U

time [s]

Inputs
U Trigger of the timer bool

HLD Timer hold bool

Outputs
Q Timer output bool

et Elapsed time [s] double

rt Remaining time [s] double

261

Parameters
mode Timer mode �1 long

1 Pulse – an output pulse of the length pt is generated upon
rising edge at the U input. All input pulses during the
generation of the output pulse are ignored.

2 Delayed ON – the input signal U is copied to the Q output,
but the start of the pulse is delayed by pt seconds. Any
pulse shorter than pt is does not pass through the block.

3 Delayed OFF – the input signal U is copied to the Q output,
but the end of the pulse is delayed by pt seconds. If the
break between two pulses is shorter than pt, the output
remains on for the whole time.

4 Delayed change – the Q output is set to the value of the U

input no sooner than the input remains unchanged for pt
seconds

pt Timer interval [s] �1.0 double

262 CHAPTER 8. LOGIC – LOGIC CONTROL

Chapter 9

TIME – Blocks for handling time

Contents
DATE_ – Current date . 264
DATETIME – Get, set and convert time 265
TIME – Current time . 268
WSCH – Weekly schedule . 269

263

264 CHAPTER 9. TIME – BLOCKS FOR HANDLING TIME

DATE_ – Current date

Block Symbol Licence: STANDARD

year
month

day
dow

DATE_

Function Description
The outputs of the DATE_ function block correspond with the actual date of the operating
system. Use the DATETIME block for advanced operations with date and time.

Outputs
year Year long

month Month long

day Day long

dow Day of week, first day of week is Sunday (1) long

Parameter
tz Timezone �1 long

1 Local time
2 UTC

265

DATETIME – Get, set and convert time

Block Symbol Licence: STANDARD

uyear

umonth

uday

uhour

umin

usec

unsec

SET

GET

yyear
ymonth

yday
yhour
ymin
ysec

ynsec
ydow
ywoy
tday
tsec

tnsec
dsec

DATETIME

Function Description
The DATETIME block is intended for advanced date/time operations in the REX control
system.

It allows synchronization of the operating system clock and the clock of the REX
control system. When the executive of the REX control system is initialized, both clocks
are the same. But during long-term operation the clocks may loose synchronization (e.g.
due to daylight saving time). If re-synchronization is required, the rising edge (off→on)
at the SET input adjusts the clock of the REX control system according to the block
inputs and parameters.

It is highly recommended not to adjust the REX control system time when the con-
trolled machine/process is in operation. Unexpected behavior might occur.

If date/time reading or conversion is required, the rising edge (off→on) at the GET

input triggers the action and the block outputs are updated. The outputs starting with
’t’ denote the total number of respective units since January 1st, 2000 UTC.

Both reading and adjusting clock can be repeated periodically if set by getper and
setper parameters.

If the difference of the two clocks is below the tolerance limit settol, the clock of the
REX control system is not adjusted at once, a gradual synchronization is used instead.
In such a case, the timing of the REX control system executive is negligibly altered and
the clocks synchronization is achieved after some time. Afterwards the timing of the REX
executive is reverted back to normal.

For simple date/time reading use the DATE_ and TIME function blocks.

Inputs
uyear Input for setting year long

umonth Input for setting month long

266 CHAPTER 9. TIME – BLOCKS FOR HANDLING TIME

uday Input for setting day long

uhour Input for setting hours long

umin Input for setting minutes long

usec Input for setting seconds long

unsec Input for setting nanoseconds ↓-9,22E+18 ↑9,22E+18 large

SET Trigger for setting time bool

GET Trigger for getting time bool

Outputs
yyear Year long

ymonth Month long

yday Day long

yhour Hours long

ymin Minutes long

ysec Seconds long

ynsec Nanoseconds long

ydow Day of week long

ywoy Week of year long

tday Total number of days long

tsec Total number of seconds long

tnsec Total number of nanoseconds large

dsec Number of seconds since midnight long

Parameters
isetmode Source for setting time �1 long

1 OS clock
2 Block inputs
3 The unsec input
4 The usec input
5 The unsec input, relative

igetmode Source for getting or converting time �6 long

1 OS clock
2 Block inputs
3 The unsec input
4 The usec input
5 The uday input
6 REX clock

settol Tolerance for setting the REX clock [s] �1.0 double

setper Period for setting time [s] (0=not periodic) double

getper Period for getting time [s] (0=not periodic) �0.001 double

FDOW First day of week is Sunday bool

off . . . Week starts on Monday
on Week starts on Sunday

267

tz Timezone �1 long

1 Local time
2 UTC

268 CHAPTER 9. TIME – BLOCKS FOR HANDLING TIME

TIME – Current time

Block Symbol Licence: STANDARD

hour
min
sec

TIME

Function Description
The outputs of the TIME function block correspond with the actual time of the operating
system. Use the DATETIME block for advanced operations with date and time.

Outputs
hour Hours long

min Minutes long

sec Seconds long

Parameter
tz Timezone �1 long

1 Local time
2 UTC

269

WSCH – Weekly schedule

Block Symbol Licence: STANDARD

SET

val

fsch

iy
y

isch
trem

ynext

WSCH

Function Description
The WSCH function block is a weekly scheduler for e.g. heating (day, night, eco), ventilation
(high, low, off), lighting, irrigation etc. Its outputs can be used for switching individual
appliances on/off or adjusting the intensity or power of the connected devices.

During regular weekly schedule the outputs iy and y reflect the values from the wst

table. This table contains triplets day-hour-value. E.g. the notation [2 6.5 21.5] states
that on Tuesday, at 6:30 in the morning (24-hour format), the output y will be set to 21.5.
The output iy will be set to 22 (rounding to nearest integer). The individual triplets are
separated by semicolons.

The days in a week are numbered from 1 (Monday) to 7 (Sunday). Higher values
can be used for special daily schedules, which can be forced using the fsch input or the
specdays table. The active daily program is indicated by the isch output.

Alternatively it is possible to temporarily force a specific output value using the val

input and a rising edge at the SET input (off→on). When a rising edge occurs at the
SET input, the val input is copied to the y output and the isch output is set to 0. The
forced value remains set until:

• the next interval as defined by the wst table, or

• another rising edge occurs at the SET input, or

• a different daily schedule is forced using the fsch input.

The list of special days (specdays) can be used for forcing a special daily schedule
at given dates. E.g. you can force a Sunday daily schedule on holidays, Christmas, New
Year, etc. The date is entered in the YYYYMMDD format. The notation [20160328 7] thus
means that on March 28th, 2016, the Sunday daily schedule should be used. Individual
pairs are separated by semicolons.

The trem and ynext outputs can be used for triggering specific actions in advance,
before the y and iy are changed.

The iy output is meant for direct connection to function blocks with Boolean inputs
(the conversion from type long to type bool is done automatically).

270 CHAPTER 9. TIME – BLOCKS FOR HANDLING TIME

The nmax parameter defines memory allocation for the wst and specdays arrays.
For nmax = 100 the wst list can contain up to 100 triplets day-hour-value. In typical
applications there is no need to modify the nmax parameter.

Inputs
SET Trigger for setting the y and iy outputs bool

val Temporary value to set the y and iy outputs to double

fsch Forced schedule long

0 standard weekly schedule
1 Monday
2 Tuesday

.
7 Sunday
8 and above additional daily programs as defined by the wst

table

Outputs
iy Integer output value long

y Output value double

isch Daily schedule identifier long

trem Time remaining in the current section (in seconds) double

ynext Output in the next section double

Parameters
tz Timezone �1 long

1 Local time
2 UTC

nmax Allocated size of arrays ↓10 ↑1000000 �100 long

wst Weekly schedule table (list of triplets day-hour-value)
�[1 0.01 18.0; 2 6.0 22.0; 2 18.0 18.0; 3 6.0 22.0; 3 18.0 18.0; 4 6.0 22.0; 4 18.0 18.0; 5 6.0 22.0; 5 18.0 18.0; 6 6.0 22.0; 6 18.0 18.0; 1 0.01 18.0]

double

specdays List of special days (list of pairs date-daily program)
�[20150406 1; 20151224 1; 20151225 1; 20151226 1; 20160101 1; 20160328 1; 20170417 1; 20180402 1; 20190422 1; 20200413 1]

long

Chapter 10

ARC – Data archiving

Contents
10.1 Functionality of the archiving subsystem 272

10.2 Generating alarms and events . 273

ALB, ALBI – Alarms for Boolean value 273

ALN, ALNI – Alarms for numerical value 275

10.3 Trends recording . 277

ACD – Archive compression using Delta criterion 277

TRND – Real-time trend recording 279

TRNDV – Real-time trend recording with vector input 282

TRNDLF – ∗ Real-time trend recording (lock-free) 284

TRNDVLF – ∗ Real-time trend recording (for vector signals, lock-free)286

10.4 Archive management . 287

AFLUSH – Forced archive flushing . 287

The RexCore executive of the REX Control System consists of various interconnected
subsystems (real-time subsystem, diagnostic subsystem, drivers subsystem, etc.). One of
these subsystems is the archiving subsystem.

The archiving subsystem takes care of recording the history of the control algorithm.
The first chapter describes the functionality of the archiving subsystem while the subse-
quent chapters describe the function blocks of the REX Control System.

The function blocks can be divided into groups by their use:

• Blocks for generating alarms and events

• Blocks for recording trends

• Blocks for handling archives

271

272 CHAPTER 10. ARC – DATA ARCHIVING

10.1 Functionality of the archiving subsystem

The archive in the REX Control System stores the history of events, alarms and trends
of selected signals. There can be up to 15 archives in each target device. The types or
archives are listed below:

RAM memory archive – Suitable for short-term data storage. The data access rate
is very high but the data is lost on reboot.

Archive in a backed-up memory – Similar to the RAM archive but the data is not
lost on restart. Data can be accessed fast but the capacity is usually quite limited
(depends on the target platform).

Disk archive The disk archives are files in a proprietary binary format. The files are
easily transferrable among individual platforms and the main advantage is the size,
which is limited only by the capacity of the storage medium. On the other hand,
the drawback is the relatively slow data access.

Not all hardware platforms support all types of archives. The individual types which are
supported by the platform can be displayed in the RexDraw program after clicking on
the name (IP address) of the target device in the tree view panel. The supported types
are listed in the lower left part of the Target tab.

10.2. GENERATING ALARMS AND EVENTS 273

10.2 Generating alarms and events

ALB, ALBI – Alarms for Boolean value

Block Symbols Licence: STANDARD

U iac

ALB

U

men

iac
HA
LA

ALBI

Function Description
The ALB and ALBI blocks generate alarms or events when a Boolean input signal U

changes. The men parameter selects whether the rising or falling or both edges in the
input signal should be indicated. The iac output shows the current alarm (event) code.

The ALBI block is an extension of the ALB block as the alarms (events) are indicated
also by Boolean output signals HA, LA and NACK. The type of edges to watch is selected by
the men input signal and the alarms are acknowledged by the iACK input signal instead
of parameters with the same name and meaning.

The events and alarms are differentiated by the lvl parameter in the REX Con-
trol System. The range 1 ≤ lvl ≤ 127 is reserved for alarms. All starts, ends and
acknowledgements of the alarms are stored in the archive. On the contrary, the range
128 ≤ lvl ≤ 255 indicates events. Only the start (the time instant) of the event is stored
in the archive.

Inputs
U Logical input of the block whose changes are watched bool

men Enable alarms long

0 All alarms disabled
1 Low-alarm enabled (LA) (falling edge in the input signal

U)
2 High-alarm enabled (HA)(rising edge in the input signal U)
3 All alarms enabled

iACK Acknowledge alarm byte

1 Low-alarm acknowledge
2 High-alarm acknowledge
3 Both alarms acknowledge

Alarm is acknowledged on rising edge

274 CHAPTER 10. ARC – DATA ARCHIVING

Outputs
iac Current alarm code long

0 All alarms inactive
1 Low-alarm active (LA)
2 High-alarm active (HA)
256 . . . Low-alarm not acknowledged (NACK)
512 . . . High-alarm not acknowledged (NACK)

HA High-alarm indicator bool

LA Low-alarm indicator bool

NACK Alarm-not-acknowledged indicator bool

Parameters
arc List of archives to store the events. The format of the list is e.g.

1,3..5,8. The event will be stored in all listed archives (see the
ARC block for details on archives numbering). Third-party programs
(Simulink, OPC clients etc.) work with an integer number, which is a
binary mask, i.e. 157 (binary 10011101) in the mentioned case.

word

id Identification code of the alarm in the archive. This identifier must be
unique in the whole target device with the REX control system (i.e.
in all archiving blocks). �1

word

lvl The level of the alarms (HA and LA) which differentiates alarms from
events and defines the severity of the alarm/event ↓1 �1

byte

Desc Extended description of the alarm which is displayed by the diagnostic
tools of the REX control system �Alarm Description

string

10.2. GENERATING ALARMS AND EVENTS 275

ALN, ALNI – Alarms for numerical value

Block Symbols Licence: STANDARD

u iac

ALN

u
hys
hh
h
l
ll

iac
E

HHA
HA
LA

LLA

ALNI

Function Description
The ALN and ALNI blocks generate two-level alarms or events when a limit value is
exceeded (or not reached). There are four limit values the input signal u is compared to,
namely high-limits h and hh and low-limits l and ll. The iac output shows the current
alarm (event) code.

The ALNI block is an extension of the ALN block as the alarms (events) are indicated
also by Boolean output signals HHA, HA, LA and LLA and the variables of the alarm
algorithm are given by the input signals hys, hh, h, l and ll instead of parameters with
the same name and meaning.

The events and alarms are differentiated by the lvl parameter in the REX Con-
trol System. The range 1 ≤ lvl ≤ 127 is reserved for alarms. All starts, ends and
acknowledgements of the alarms are stored in the archive. On the contrary, the range
128 ≤ lvl ≤ 255 indicates events. Only the start (the time instant) of the event is stored
in the archive.

Inputs
u Analog input of the block which is checked to remain within the given

limits
double

hys Alarm hysteresis for switching the alarm off ↓0.0 ↑10000000000.0 double

hh The second high-alarm limit, must be greater than h double

h High-alarm limit, must be greater than l double

l Low-alarm limit, must be greater than ll double

ll The second low-alarm limit double

iACK Alarm is acknowledged on rising edge of the individual bits of this
input/parameter. E.g. value 15 acknowledges all alarms.
byte

1 Second low-alarm acknowledge
2 Low-alarm acknowledge
4 High-alarm acknowledge
8 Second high-alarm acknowledge

276 CHAPTER 10. ARC – DATA ARCHIVING

In case a one-level alarm is required, it is sufficient to set lvl2=0 or set the hh and ll

limits to extreme values which can never be reached by the input signal.

Outputs
iac Current alarm code. Additional bitwise combinations of the codes may

appear. E.g. 12 means both high alarms.
long

0 Signal within limits
1 Low-alarm active
2 High-alarm active
4 Second low-alarm active
8 Second high-alarm active
256 . . . Low-alarm not acknowledged
512 . . . High-alarm not acknowledged
1024 . . Second low-alarm not acknowledged
2048 . . Second high-alarm not acknowledged
-1 Invalid alarm limits

E Error flag bool

off . . . No error
on An error occurred, alarm limits disordered

HHA The second high-alarm indicator bool

HA High-alarm indicator bool

LA Low-alarm indicator bool

LLA The second low-alarm indicator bool

NACK Alarm-not-acknowledged indicator bool

Parameters
acls Alarm class (data type to store) �8 byte

1 Bool
2 Byte
3 Short

4 Long
5 Word
6 DWord

7 Float
8 Double
9 Time

arc List of archives to store the events. The format of the list is e.g.
1,3..5,8. The event will be stored in all listed archives (see the
ARC block for details on archives numbering). Third-party programs
(Simulink, OPC clients etc.) work with an integer number, which is a
binary mask, i.e. 157 (binary 10011101) in the mentioned case.

word

id Identification code of the alarm in the archive. This identifier must be
unique in the whole target device with the REX control system (i.e.
in all archiving blocks). �1

word

lvl1 The level of first high- and low-alarms (HA and LA) which differentiates
alarms from events and defines the severity of the alarm/event

↓1 �1

byte

lvl2 The level of second high- and low-alarms (HHA and LLA) which
differentiates alarms from events and defines the severity of the
alarm/event ↓1 �10

byte

Desc Extended description of the alarm which is displayed by the diagnostic
tools of the REX control system �Alarm Description

string

10.3. TRENDS RECORDING 277

10.3 Trends recording

ACD – Archive compression using Delta criterion

Block Symbol Licence: STANDARD

u
delta

y
E

ACD

Function Description
The ACD block is meant for storing compressed analog signals to archives using archive
events.

The main idea is to store the input signal u only when it changes significantly. The
interval between two samples is in the range 〈tmin,tmax〉 seconds (rounded to the nearest
multiple of the sampling period). A constant input signal is stored every tmax seconds
while rapidly changing signal is stored every tmin seconds.

When the execution of the block is started, the first input value is stored. This value
will be referred to as u0 in the latter. The rules for storing the following samples are
given by the delta and TR input signals.

For TR = off the condition |u−u0| > delta is checked. If it holds and the last stored
sample occurred more than tmin seconds ago, the value of input u is stored and u0=u

is set. If the condition is fulfilled sooner than tmin seconds after the last stored value,
the error output E is set to 1 and the first value following the tmin interval is stored. At
that time the output E is set back to 0 and the whole procedure is repeated.

For TR = on the input signal values are compared to a signal with compensated trend.
The condition for storing the signal is the same as in the previous case.

The following figure shows the archiving process for both cases: a) TR = off, b)
TR = on. The stored samples are marked by the symbol ×.

Inputs
u Signal to compress and store double

delta Threshold for storing the signal ↓0.0 ↑10000000000.0 double

278 CHAPTER 10. ARC – DATA ARCHIVING

Outputs
y The last value stored in the archive double

E Error flag – indicates that a significant change in the input signal
occurred sooner than the tmin interval passes

bool

off . . . No error on An error occurred

Parameters
acls Archive class determining the variable type to store �8 byte

1 Bool
2 Byte
3 Short

4 Long
5 Word
6 DWord

7 Float
8 Double
9 Time

arc List of archives to store the events. The format of the list is e.g.
1,3..5,8. The event will be stored in all listed archives (see the
ARC block for details on archives numbering). Third-party programs
(Simulink, OPC clients etc.) work with an integer number, which is a
binary mask, i.e. 157 (binary 10011101) in the mentioned case.

word

id Identification code of the event in the archive. This identifier must be
unique in the whole target device with the REX control system (i.e.
in all archiving blocks). �1

word

tmin The shortest interval between two samples of the u input signal stored
in the archive [s] ↓0.001 ↑1000000.0 �1.0

double

tmax The longest interval between two samples of the u input signal stored
in the archive [s] ↓1.0 ↑1000000.0 �1000.0

double

TR Trend evaluation flag �on bool

off . . . The deviation of the input signal from the last stored value
is evaluated

on The deviation of the input signal from the last value’s
trend is evaluated

Desc Extended description of the event which is displayed by the diagnostic
tools of the REX control system �Value Description

string

10.3. TRENDS RECORDING 279

TRND – Real-time trend recording

Block Symbol Licence: STANDARD

u1
u2
u3
u4
RUN
R1

y1

y2

y3

y4

iE

TRND

Function Description
The TRND block is designed for storing of up to 4 input signals (u1 to u4) in cyclic
buffers in the memory of the target device. The main advantage of the TRND block is
the synchronization with the real-time executive, which allows trending of even very fast
signals (i.e. with very high sampling frequency). In contrary to asynchronous data storing
in the higher level operator machine (host), there are no lost or multiply stored samples.

The number of stored signals is determined by the parameter n. In case the trend
buffer of length l samples gets full, the oldest samples are overwritten. Data can be
stored once in pfac executions of the block (decimation) and the data can be further
processed according to the ptype1 to ptype4 parameters. The other decimation factor
afac can be used for storing data in archives.

The type of trend buffers can be specified in order to conserve memory of the target
device. The memory requirements of the trend buffers are defined by the formula s ·n ·l,
where s is the size of the corresponding variable in bytes. The default type Double

consumes 8 bytes per sample, thus for storing n = 4 trends of this type and length
l = 1000, 8 · 4 · 1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 16 of this reference guide.

It can happen that the processed input value exceeds the representable limits when
using different type of buffer than Double. In such a case the highest (lowest) repre-
sentable number of the corresponding type is stored in the buffer and an error is binary
encoded to the iE output according to the following table (the unused bits are omitted):

Error Range underflow Range overflow
Input u4 u3 u2 u1 u4 u3 u2 u1

Bit number 11 10 9 8 3 2 1 0
Bit weight 2048 1024 512 256 8 4 2 1

In case of simultaneous errors the resulting error code is given by the sum of the weights
of individual errors. Note that underflow and overflow cannot happen simultaneously on

280 CHAPTER 10. ARC – DATA ARCHIVING

a single input.
It is possible to read, display and export the stored data by the RexView diagnostic

program.

Inputs
u1..u4 Analog inputs to be processed and stored in the trend double

RUN Enable execution. The data are processed and stored if and only if
RUN = on.

bool

R1 Input for clearing the trend contents. The buffers are cleared when
R1 = on. This flag overpowers the RUN input.

bool

Outputs
y1..y4 Analog outputs of the block set once in pfac executions of the block

to the last values stored in the trend buffers
double

iE Error code, see the table above long

Parameters
n Number of signals to process and store in the trend buffers

↓1 ↑4 �4
long

l Number of samples reserved in memory for each trend buffer
↓0 ↑268435000 �1000

long

btype Type of all n trend buffers �8 long

1 Bool
2 Byte
3 Short

4 Long
5 Word
6 DWord

7 Float
8 Double
10 Large

ptypei The way the signal ui, i = 1 . . . 4, is processed. The last pfac samples
are processed as selected and the result is stored in the i-th trend
buffer. �1

long

1 No processing, just storing data
2 Minimum from the last pfac samples
3 Maximum from the last pfac samples
4 Sum of the last pfac samples
5 Simple average of the last pfac samples
6 Root mean square of the last pfac samples
7 Variance of the last pfac samples

pfac Multiple of the block execution period defining the period for storing
the data in the trend buffers. Data are stored with the period of
pfac ·TS unless RUN = off, where TS is the block execution period in
seconds. ↓1 ↑1000000 �1

long

afac Every afac-th sample stored in the trend buffer is also stored in the
archives specified by the arc parameter. There are no data stored
in the archives for afac = 0. Data are stored with the period of
afac · pfac · TS , where TS is the block execution period in seconds.

↓0 ↑1000000

long

10.3. TRENDS RECORDING 281

arc List of archives to store the trend data. The format of the list is
e.g. 1,3..5,8. The data will be stored in all listed archives (see the
ARC block for details on archives numbering). Third-party programs
(Simulink, OPC clients etc.) work with an integer number, which is a
binary mask, i.e. 157 (binary 10011101) in the mentioned case.

word

id Identification code of the trend block. This identifier must be unique
in the whole target device with the REX control system (i.e. in all
archiving blocks). �1

word

Title Title of the trend to be displayed in the diagnostic tools of the REX
Control System, e.g. in the RexView program �Trend Title

string

timesrc Source of timestamps. Each data sample in trend buffer is stored with
a timestamp. For fast or short term trends where you are interested
in sample-by-sample timing more than in absolute time, choose
CORETIMER – REX internal technological time which is incremented
by nominal period each base tick. For long running trends where you
are interested mostly in absolute time shared with operating system
(and possibly synchronized by NTP), choose RTC. Other values are
intended for debug or special purposes. �1

long

1 CORETIMER – technological time – at current tick
2 CORETIMER-PRECISE – technological time – at block

execution
3 RTC – real time clock (wallclock) from operating system –

at current tick
4 RTC-PRECISE – real time clock (wallclock) from operating

system – at block execution
4 PFC – raw high precision time (PerFormanceCounter)

282 CHAPTER 10. ARC – DATA ARCHIVING

TRNDV – Real-time trend recording with vector input

Block Symbol Licence: STANDARD

uVec
HLD iE

TRNDV

Function Description
The TRND block is designed for storing input signals which arrive at the uVec input in
vector form. On the contrary to the TRND block it allows storing more than 4 signals.
The signals are stored in cyclic buffers in the memory of the target device. The main
advantage of the TRNDV block is the synchronization with the real-time executive, which
allows trending of even very fast signals (i.e. with very high sampling frequency). In
contrary to asynchronous data storing in the higher level operator machine (host), there
are no samples lost or multiply stored.

The number of stored signals is determined by the parameter n. In case the trend
buffer of length l samples gets full, the oldest samples are overwritten. Data can be
stored once in pfac executions of the block (decimation). The other decimation factor
afac can be used for storing data in archives.

The type of trend buffers can be specified in order to conserve memory of the target
device. The memory requirements of the trend buffers are defined by the formula s ·n ·l,
where s is the size of the corresponding variable in bytes. The default type Double

consumes 8 bytes per sample, thus for storing e.g. n = 4 trends of this type and length
l = 1000, 8 · 4 · 1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 16 of this reference guide.

It is possible to read, display and export the stored data by the RexView diagnostic
program.

Inputs
uVec Vector signal to record reference

HLD Input for freezing the cyclic buffers, no data is appended when HLD =
on

bool

Output
iE Error code error

i REX general error

10.3. TRENDS RECORDING 283

Parameters
n Number of signals (trend buffers) ↓1 ↑64 �8 long

l Number of samples per trend buffer ↓2 ↑268435000 �1000 long

btype Type of all trend buffers �8 long

1 Bool
2 Byte
3 Short

4 Long
5 Word
6 DWord

7 Float
8 Double
10 Large

pfac Multiple of the block execution period defining the period for storing
the data in the trend buffers. Data are stored with the period of
pfac ·TS unless RUN = off, where TS is the block execution period in
seconds. ↓1 ↑1000000 �1

long

afac Every afac-th sample stored in the trend buffer is also stored in the
archives specified by the arc parameter. There are no data stored
in the archives for afac = 0. Data are stored with the period of
afac · pfac · TS , where TS is the block execution period in seconds.

↓0 ↑1000000

long

arc List of archives to store the trend data. The format of the list is
e.g. 1,3..5,8. The data will be stored in all listed archives (see the
ARC block for details on archives numbering). Third-party programs
(Simulink, OPC clients etc.) work with an integer number, which is a
binary mask, i.e. 157 (binary 10011101) in the mentioned case.

word

id Identification code of the trend block. This identifier must be unique
in the whole target device with the REX control system (i.e. in all
archiving blocks). �1

word

Title Title of the trend to be displayed in the diagnostic tools of the REX
Control System, e.g. in the RexView program �Trend Title

string

284 CHAPTER 10. ARC – DATA ARCHIVING

TRNDLF – ∗ Real-time trend recording (lock-free)

Block Symbol Licence: ADVANCED

u1
u2
u3
u4
u5
u6
u7
u8
RUN

y1
y2
y3
y4
y5
y6
y7
y8
iE

TRNDLF

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
u1 First analog input of the block double

u2 Second analog input of the block double

u3 Third analog input of the block double

u4 Fourth analog input of the block double

u5 Fifth analog input of the block double

u6 Sixth analog input of the block double

u7 Seventh analog input of the block double

u8 Eighth analog input of the block double

RUN Enable execution bool

Parameters
n Number of signals (trend buffers) ↓1 ↑8 �8 long

l Number of samples per trend buffer ↓0 ↑268435000 �1024 long

10.3. TRENDS RECORDING 285

btype Type of all trend buffers �8 long

1 Bool
2 Byte
3 Short
4 Long
5 Word
6 DWord
7 Float
8 Double
–-
10 Large

Title Trend title string �Trend Title string

timesrc Source of timestamps �1 long

Outputs
y1 First analog output of the block double

y2 Second analog output of the block double

y3 Third analog output of the block double

y4 Fourth analog output of the block double

y5 Fifth analog output of the block double

y6 Sixth analog output of the block double

y7 Seventh analog output of the block double

y8 Eighth analog output of the block double

iE Error code (bitwise multiplexed) long

286 CHAPTER 10. ARC – DATA ARCHIVING

TRNDVLF – ∗ Real-time trend recording (for vector signals,
lock-free)

Block Symbol Licence: ADVANCED

uVec
HLD iE

TRNDVLF

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uVec Vector signal to record reference

HLD Hold bool

Parameters
n Number of signals (trend buffers) ↓1 ↑64 �8 long

l Number of samples per trend buffer ↓2 ↑268435000 �1024 long

btype Type of all trend buffers �8 long

1 Bool
2 Byte
3 Short
4 Long
5 Word
6 DWord
7 Float
8 Double
–-
10 Large

Title Trend title string �Trend Title string

timesrc Source of timestamps �1 long

Output
iE Error code error

i REX general error

10.4. ARCHIVE MANAGEMENT 287

10.4 Archive management

AFLUSH – Forced archive flushing

Block Symbol Licence: STANDARD

FLUSH

AFLUSH

Function Description
The AFLUSH block is intended for immediate storing of archive data to permanent mem-
ory (hard drive, flash disk, etc.). It is useful when power loss can be anticipated, e.g.
emergency shutdown of the system following some failure. It forces the archive subsystem
to write all archive data to avoid data loss. The write operation is initiated by a rising
edge (off→on) at the FLUSH input regardless of the period parameter of the ARC block.

Input
FLUSH Force archive flushing bool

Parameter
arc List of archives to store the events. The format of the list is e.g.

1,3..5,8. The event will be stored in all listed archives (see the
ARC block for details on archives numbering). Third-party programs
(Simulink, OPC clients etc.) work with an integer number, which is a
binary mask, i.e. 157 (binary 10011101) in the mentioned case.

word

288 CHAPTER 10. ARC – DATA ARCHIVING

Chapter 11

STRING – Blocks for string
operations

Contents
CNS – String constant . 290
CONCAT – ∗ Concat string by pattern 291
FIND – Find a Substring . 292
ITOS – Integer number to string conversion 293
LEN – String length . 294
MID – Substring Extraction . 295
PJROCT – ∗ Parse JSON string (real output) 296
PJSOCT – ∗ Parse JSON string (string output) 297
REGEXP – Regular expresion parser 298
REPLACE – Replace substring . 299
RTOS – Real Number to String Conversion 300
SELSOCT – ∗ String selector . 301
STOR – String to real number conversion 303

289

290 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

CNS – String constant

Block Symbol Licence: STANDARD

sy

CNS

Function Description
The CNS block is a simple string constant with maximal available size. A value of scv is
always truncated to nmax.

Parameters
scv String (constant) value string

nmax Allocated size of string [bytes] ↓0 ↑65520 long

Output
sy String output value string

291

CONCAT – ∗ Concat string by pattern

Block Symbol Licence: STANDARD

su1
su2
su3
su4
su5
su6
su7
su8

sy

CONCAT

Function Description
Concatenates up to 8 input strings su1 to su8 by pattern specified in ptrn parameter.

Inputs
su1..8 String input value string

Parameters
ptrn Concatenation pattern �%1%2%3%4 string

nmax Allocated size of string [bytes] ↓0 ↑65520 long

Output
sy String output value string

292 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

FIND – Find a Substring

Block Symbol Licence: STANDARD

su1
su2 pos

FIND

Function Description
The FIND block searches for the string su2 in the string su1 and returns a one-based
index into su1 if a su2 is found or zero otherwise. Both su1 and su2 are truncated to
nmax.

Inputs
su1 String input value string

su2 String input value string

Parameter
nmax Allocated size of string [bytes] ↓0 ↑65520 long

Output
pos Position of substring long

293

ITOS – Integer number to string conversion

Block Symbol Licence: STANDARD

n sy

ITOS

Function Description
The ITOS block is used for converting an integer into text. The len parameter specifies
the minimum length of the output string. If the number has a smaller number of digits,
zeroes or spaces will be added according to the mode parameter. The radix parameter
specifies the numerical system in which the conversion is to be performed. The output
string does not contain any identification of the numerical system used (e.g. the 0x prefix
for the hexadecimal system).

Input
n Integer input of the block long

Output
sy String output value string

Parameters
len Minimum length of output string ↓0 ↑30 long

mode Output string format �1 long

1 align right, fill with spaces
2 align right, fill with zeroes
3 align left, fill with spaces

radix Radix �10 long

2 Binary
8 Octal
10 Decimal
16 Hexadecimal

294 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

LEN – String length

Block Symbol Licence: STANDARD

su len

LEN

Function Description
The LEN block returns the actual length of the string in su in UTF-8 characters.

Input
su String input value string

Parameter
nmax Allocated size of string [bytes] ↓0 ↑65520 long

Output
len Length of input string long

295

MID – Substring Extraction

Block Symbol Licence: STANDARD

su
l
p

sy

MID

Function Description
The MID block extracts a substring sy from su. The parameters l and p specify position
and length of the string being extracted in UTF-8 characters. The parameter p is one-
based.

Inputs
su String input value string

l Length of output string long

p Position of output string (one-based) long

Parameter
nmax Allocated size of string [bytes] ↓0 ↑65520 long

Output
sy String output value string

296 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

PJROCT – ∗ Parse JSON string (real output)

Block Symbol Licence: STANDARD

jtxt

RUN

y1
y2
y3
y4
y5
y6
y7
y8
iE

PJROCT

Function Description
Parses input JSON string jtxt according to specified name* parameters when the input
RUN is on. Output signals are real type.

Inputs
jtxt JSON formated string string

RUN Enable execution bool

Parameters
name1..8 Name of JSON object string

nmax Allocated size of string [bytes] ↓0 ↑65520 long

yerr Substitute value for an error case double

Outputs
y1..8 Block output signal double

iE Error code error

297

PJSOCT – ∗ Parse JSON string (string output)

Block Symbol Licence: STANDARD

jtxt

RUN

sy1
sy2
sy3
sy4
sy5
sy6
sy7
sy8

iE

PJSOCT

Function Description
Parses input JSON string jtxt according to specified name* parameters when the input
RUN is on. Output signals are string type.

Inputs
jtxt JSON formated string string

RUN Enable execution bool

Parameters
name1..8 Name of JSON object string

nmax Allocated size of string [bytes] ↓0 ↑65520 long

Outputs
sy1..8 String output value string

iE Error code error

298 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

REGEXP – Regular expresion parser

Block Symbol Licence: ADVANCED

text

RUN

MATCH
cap

cap1
cap2
cap3
cap4
cap5
cap6
cap7
cap8

REGEXP

299

REPLACE – Replace substring

Block Symbol Licence: STANDARD

su1
su2
l
p

sy

REPLACE

Function Description
The REPLACE block replaces a substring from su1 by the string su2 and puts the result
in sy. The parameters l and p specify position and length of the string being replaced
in UTF-8 characters. The parameter p is one-based.

Inputs
su1 String input value string

su2 String input value string

l Length of origin text long

p Position of origin text (one-based) long

Parameter
nmax Allocated size of string [bytes] ↓0 ↑65520 long

Output
sy String output value string

300 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

RTOS – Real Number to String Conversion

Block Symbol Licence: STANDARD

u sy

RTOS

Function Description
The RTOS converts a real number in u into a string value in su. Precision and format are
specified by the prec and mode parameters.

Input
u Analog input of the block double

Parameters
prec Precision (number of digits) ↓0 ↑20 long

mode Output string format �1 long

1 best fit
2 normal
3 exponencial

Output
sy String output value string

301

SELSOCT – ∗ String selector

Block Symbol Licence: STANDARD

su0
su1
su2
su3
su4
su5
su6
su7
iSW
SW1
SW2
SW3

sy

SELSOCT

Function Description
The SELSOCT block selects one of the input strings and copy it to the output string
sy. The selection of the active signal u0. . . u15 is based on the iSW input or the binary
inputs SW1. . . SW3. These two modes are distinguished by the BINF binary flag. The signal
is selected according to the following table:

iSW SW1 SW2 SW3 y

0 off off off u0

1 on off off u1

2 off on off u2

3 on on off u3

4 off off on u4

5 on off on u5

6 off on on u6

7 on on on u7

Inputs
su0..7 String input value string

iSW Active signal selector long

SW1..3 Binary signal selector bool

Parameters
BINF Enable the binary selectors bool

nmax Allocated size of string [bytes] ↓0 ↑65520 long

302 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

Output
sy The selected input signal string

303

STOR – String to real number conversion

Block Symbol Licence: STANDARD

su y
E

STOR

Function Description
The STOR converts a string in su into a real number in y. An error is signaled in E if
unsuccessful.

Input
su String input value string

Parameter
yerr Substitute value for an error case double

Outputs
y Analog output of the block double

E Error indicator bool

304 CHAPTER 11. STRING – BLOCKS FOR STRING OPERATIONS

Chapter 12

PARAM – Blocks for parameter
handling

Contents
GETPA – Block for remote array parameter acquirement 306
GETPR, GETPI, GETPB – Blocks for remote parameter acquirement . 308
GETPS – ∗ Block for remote string parameter acquirement 310
PARA – Block with input-defined array parameter 311
PARR, PARI, PARB – Blocks with input-defined parameter 312
PARS – ∗ Block with input-defined string parameter 314
SETPA – Block for remote array parameter setting 315
SETPR, SETPI, SETPB – Blocks for remote parameter setting 317
SETPS – ∗ Block for remote string parameter setting 319
SGSLP – Set, get, save and load parameters 320
SILO – Save input value, load output value 324
SILOS – Save input string, load output string 325

305

306 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

GETPA – Block for remote array parameter acquirement

Block Symbol Licence: STANDARD

GET arrRef
E

GETPA

Function Description
The GETPA block is used for acquiring the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the GETF parameter.
For GETF = off the output arrRef is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the block works in single-shot read mode. In that case the remote parameter
is read only when rising edge (off→on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

• Relative – starts at the level where the GETPA block is located. The string has
to be prefixed with ’.’ in this case. Examples of relative paths: ".CNDR:yp",
".Lights.ATMT:touts".

• Absolute – complete sequence of hierarchic levels down to the block. For refer-
ring to blocks located in the driver task (see the IOTASK block for details on
configuration) the ’&’ followed by the driver’s name is used at the beginning
of the absolute path. Examples of absolute paths: "task1.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are displayed in a tree structure
in the RexView program.

Input
GET Input for initiating one-shot parameter read bool

Outputs
arrRef Array reference reference

E Error flag bool

307

Parameters
sc String connection to the parameter string

GETF Get parameter only when forced to bool

off . . . Remote parameter is continuously read
on One-shot mode, the remote parameter is read only when

forced to by the GET input (rising edge)
nmax Maximum size of array �256 long

308 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

GETPR, GETPI, GETPB – Blocks for remote parameter acquire-
ment

Block Symbols Licence: STANDARD

GET y
E

GETPR

GET k
E

GETPI

GET Y
E

GETPB

Function Description
The GETPR, GETPI and GETPB blocks are used for acquiring the parameters of other blocks
in the model remotely . The only difference among the three blocks is the type of param-
eter which they are acquiring. The GETPR block is used for obtaining real parameters,
the GETPI block for integer parameters and the GETPB block for Boolean parameters.

The blocks operate in two modes, which are switched by the GETF parameter. For
GETF = off the output y (or k, Y) is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the blocks work in single-shot read mode. In that case the remote parameter
is read only when rising edge (off→on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT:touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be read can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

• Relative – starts at the level where the GETPR block (or GETPI, GETPB) is located.
The string has to be prefixed with ’.’ in this case. Examples of relative paths:
".GAIN:k", ".Motor1.Position:ycn".

• Absolute – complete sequence of hierarchic levels down to the block. For referring to
blocks located in the driver task (see the IOTASK block for details on configuration)
the ’&’ followed by the driver’s name is used at the beginning of the absolute path.
Examples of absolute paths: "task1.inputs.lin1:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are displayed in a tree structure
in the RexView program.

Input
GET Input for initiating one-shot parameter read (off→on) bool

309

Outputs
y Parameter value, output of the GETPR block double

k Parameter value, output of the GETPI block long

Y Parameter value, output of the GETPB block bool

E Error flag bool

off . . . No error
on An error occurred

Parameters
sc String connection to the remote parameter respecting the above

mentioned notation
string

GETF Continuous or one-shot mode bool

off . . . Remote parameter is continuously read
on One-shot mode, the remote parameter is read only when

forced to by the GET input (rising edge)

310 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

GETPS – ∗ Block for remote string parameter acquirement

Block Symbol Licence: STANDARD

GET sy
E

GETPS

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Input
GET Input for initiating one-shot parameter read bool

Parameters
sc String connection to the parameter string

GETF Get parameter only when forced to bool

off . . . Remote parameter is continuously read
on One-shot mode

nmax Allocated size of string long

Outputs
sy Parameter value string

E Error indicator bool

off . . . No error
on An error occurred

311

PARA – Block with input-defined array parameter

Block Symbol Licence: STANDARD

uRef
LOC yRef

PARA

Function Description
The PARA block allows, additionally to the standard way of parameter setting, changing
one of its parameters by the input signal. The input-parameter pair is uRef and apar.

The Boolean input LOC (LOCal) determines whether the value of the apar parameter
is read from the input uRef or is input-independent (LOC = on). In the local mode
LOC = on the parameter apar contains the last value of input uRef entering the block
right before LOC was set to on.

The output value is equivalent the value of the parameter (yRef = apar).

Inputs
uRef Array reference reference

LOC Activation of local mode bool

off . . . The parameter follows the input
on Local mode active

Output
yRef Array reference reference

Parameters
SETS Set array size flag. Use this flag to adjust the size of array when setting

the parameter.
bool

apar Initial value of the parameter �[0.0 1.0 2.0 3.0 4.0 5.0] double

312 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

PARR, PARI, PARB – Blocks with input-defined parameter

Block Symbols Licence: STANDARD

p
LOC y

PARR

ip
LOC k

PARI

P
LOC Y

PARB

Function Description
The PARR, PARI and PARB blocks allow, additionally to the standard way of parameters
setting, changing one of their parameters by the input signal. The input-parameter pairs
are p and par for the PARR block, ip and ipar for the PARI block and finally P and PAR

for the PARB block.
The Boolean input LOC (LOCal) determines whether the value of the par (or ipar,

PAR) parameter is read from the input p (or ip, P) or is input-independent (LOC = on).
In the local mode LOC = on the parameter par (or ipar, PAR) contains the last value of
input p (or ip, P) entering the block right before LOC was set to on.

The output value is equivalent the value of the parameter y = par, (or k = ipar,
Y = PAR). The output of the PARR and PARI blocks can be additionally constrained by
the saturation limits 〈lolim, hilim〉. The saturation is active only when SATF = on.

Inputs
p Parameter value (the PARR block) double

ip Parameter value (the PARI block) long

P Parameter value (the PARB block) bool

LOC Activation of local mode bool

off . . . The parameter follows the input
on Local mode active

Output
y Logical output of the PARR block double

k Logical output of the PARI block long

Y Logical output of the PARB block bool

Parameter
par Initial value of the parameter (the PARR block) �1.0 double

ipar Initial value of the parameter (the PARI block) �1 long

PAR Initial value of the parameter (the PARB block) �on bool

313

SATF Activation of the saturation limits for the PARR and PARI blocks bool

off . . . Signal not limited
on Saturation limits active

hilim Upper limit of the output signal (the PARR and PARI blocks) �1.0 double

lolim Lower limit of the output signal (the PARR and PARI blocks) �-1.0 double

314 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

PARS – ∗ Block with input-defined string parameter

Block Symbol Licence: STANDARD

sp
LOC sy

PARS

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
sp Parameter value string

LOC Activation of local mode bool

Parameters
spar Initial value of the parameter string

nmax Allocated size of string long

Output
sy String output of the block string

315

SETPA – Block for remote array parameter setting

Block Symbol Licence: STANDARD

arrRef
SET E

SETPA

Function Description
The SETPA block is used for setting the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the SETF parameter.
For SETF = off the remote parameter cs is set to the value of the input vector signal
arrRef at the start and every time when the input signal changes. If the SETF parameter
is set to on, then the block works in one-shot write mode. In that case the remote
parameter is set only when rising edge (off→on) occurs at the SET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

• Relative – starts at the level where the GETPA block is located. The string has
to be prefixed with ’.’ in this case. Examples of relative paths: ".CNDR:yp",
".Lights.ATMT:touts".

• Absolute – complete sequence of hierarchic levels down to the block. For refer-
ring to blocks located in the driver task (see the IOTASK block for details on
configuration) the ’&’ followed by the driver’s name is used at the beginning
of the absolute path. Examples of absolute paths: "task1.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are displayed in a tree structure
in the RexView program.

Inputs
arrRef Array reference reference

SET Input for initiating one-shot parameter write bool

Output
E Error flag bool

316 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

Parameters
sc String connection to the parameter string

SETF Continuous or one-shot mode bool

off . . . Remote parameter is continuously updated
on One-shot mode, the remote parameter is updated only

when forced to by the SET input (rising edge)
SETS Set array size flag. Use this flag to adjust the size of array when setting

the parameter.
bool

317

SETPR, SETPI, SETPB – Blocks for remote parameter setting

Block Symbols Licence: STANDARD

p
SET

y
E

SETPR

ip
SET

k
E

SETPI

P
SET

Y
E

SETPB

Function Description
The SETPR, SETPI and SETPB blocks are used for setting the parameters of other blocks in
the model remotely. The only difference among the three blocks is the type of parameter
which they are setting. The SETPR block is used for setting real parameters, the SETPI

block for integer parameters and the SETPB block for Boolean parameters.
The blocks operate in two modes, which are switched by the SETF parameter. For

SETF = off the remote parameter sc is set to the value of the input signal p (or ip, P)
at the start and every time when the input changes. If the SETF parameter is set to on,
then the blocks work in one-shot write mode. In that case the remote parameter is set
only when rising edge (off→on) occurs at the SET input. Successful modification of the
remote parameter is indicated by zero error output E = off and the output y (or k, Y)
is set to the value of the modified parameter. The error output is set to E = on in case
of write error.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT:touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be set can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

• Relative – starts at the level where the SETPR block (or SETPI, SETPB) is located.
The string has to be prefixed with ’.’ in this case. Examples of relative paths:
".GAIN:k", ".Motor1.Position:ycn".

• Absolute – complete sequence of hierarchic levels down to the block. For referring to
blocks located in the driver task (see the IOTASK block for details on configuration)
the ’&’ followed by the driver’s name is used at the beginning of the absolute path.
Examples of absolute paths: "task1.inputs.lin1:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are displayed in a tree structure
in the RexView program.

318 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

Inputs
p Desired parameter value at the SETPR block input double

ip Desired parameter value at the SETPI block input long

P Desired parameter value at the SETPB block input bool

SET Input for initiating one-shot parameter write (off→on) bool

Outputs
y Parameter value (the SETPR block) double

k Parameter value (the SETPI block) long

Y Parameter value (the SETPB block) bool

E Error flag bool

off . . . No error
on An error occurred

Parameters
sc String connection to the remote parameter respecting the above

mentioned notation
string

SETF Continuous or one-shot mode bool

off . . . Remote parameter is continuously updated
on One-shot mode, the remote parameter is updated only

when forced to by the SET input (rising edge)

319

SETPS – ∗ Block for remote string parameter setting

Block Symbol Licence: STANDARD

sp
SET

sy
E

SETPS

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
sp Desired parameter value string

SET Input for initiating one-shot parameter write bool

Parameters
sc String connection to the parameter string

SETF Set parameter only when forced to bool

nmax Allocated size of string long

Outputs
sy Parameter value string

E Error indicator bool

320 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

SGSLP – Set, get, save and load parameters

Block Symbol Licence: ADVANCED

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
ips
SET
GET
SAVE
LOAD

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

E
iE

SGSLP

Function Description
The SGSLP block is a special function block for manipulation with parameters of other
function blocks in the REX control system configuration. It works also in the Matlab-
Simulink system but its scope is limited to the .mdl file it is included in.

The block can manage up to 16 parameter sets, which are numbered from 0 to 15. The
number of parameter sets is given by the nps parameter and the active set is defined by
the ips input. If the ips input remains unconnected, the active parameter set is ips = 0.
Each set contains up to 16 different parameters defined by the string parameters sc0 to
sc15. Thus the SGSLP block can work with a maximum of 256 parameters of the REX
control system. An empty sci string means that no parameter is specified, otherwise one
of the following syntaxes is used:

1. <block>:<param> – Specifies one function block named block and its parameter
param. The same block and parameter are used for all nps parameter sets in this
case.

2. <block>:<param><sep>. . . <block>:<param> – This syntax allows the parameters
to differ among the parameter sets. In general, each sci string can contain up to
16 items in the form <blok>:<param> separated by comma or semi-colon. E.g. the
third item of these is active for ips = 2. There should be exactly nps items in each
non-empty sci string. If there is less items than nps none of the below described
operations can be executed on the incomplete parameter set.

321

It is recommended not to use both syntaxes in one SGSLP block, all 16 sci strings
should have the same form. The first syntax is for example used when producing nps

types of goods, where many parameters must be changed for each type of production.
The second syntax is usually used for saving user-defined parameters to disk (see the
SAVE operation below). In that case it is desirable to arrange automated switching of the
ips input (e.g. using the ATMT block from the LOGIC library).

The broot parameter is suitable when all blocks whose parameters are to be con-
trolled by the SGSLP block reside in the same subsystem or deeper in the hierarchy. It
is inserted in front of each <block> substring in the sci parameters. The ’.’ character
stands for the subsystem where the SGSLP block is located. No quotation marks are used
to define the parameter, they are used here solely to highlight a single character. If the
broot parameter is an empty string, all <block> items must contain full path. For ex-
ample, to create a connection to the CNR block and its parameter ycn located in the
same subsystem as the SGSLP block, broot = . and sc0 = CNR:ycn must be set. Or it is
possible to leave the broot parameter empty and put the ’.’ character to the sc0 string.
See the GETPR or SETPR blocks description for more details about full paths in the REX
control system.

The SGSLP block executes one of the below described operations when a rising edge
(off→on) occurs at the input of the same name. The operations are:

SET – Sets the parameters of the corresponding parameter set ips to the values of the
input signals ui. In case the parameter is successfully set, the same value is also
sent to the yi output.

GET – Gets the parameters of the corresponding parameter set ips. In case the parameter
is successfully read, its value is sent to the yi output.

SAVE – Saves the parameters of the corresponding parameter set ips to a file on the
target platform. The parameters of the procedure and the format of the resulting
file are described below.

LOAD – Loads the parameters of the corresponding parameter set ips from a file on the
target platform. This operation is executed also during the initialization of the
block but only when 0 ≤ ips0 ≤ nps − 1. The parameters of the procedure and
the format of the file are described below.

The LOAD and SAVE operations work with a file on the target platform. The name of
the file is given by the fname parameter and the following rules:

• If no extension is specified in the fname parameter, the .rxs (ReX Status file)
extension is added.

• A backup file is created when overwriting the file. The file name is preserved, only
the extension is modified by adding the ’ ’ character right after the ’.’ (e.g. when
no extension is specified, the backup file has a . rxs extension.

322 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

• The path is relative to the folder where the archives of the REX Control System
are stored. The file should be located on a media which is not erased by system
restart (flash drive or hard drive, not RAM).

The SAVE operation stores the data in a text file. Two lines are added for each
parameter sci, i = 0, . . . ,m, where m < 16 defines the nonempty scm string with the
highest number. The lines have the form:

"<block>:<param>", . . . , "<block>:<param>"

<value>, . . . , <value>

There are nps individual items "<block>:<param>" which are separated by commas.
The second line contains the same number of <value> items which contain the value
of the parameter at the same position in the line above. Note that the format of the
file remains the same even for sci containing only one <block>:<param> item (see the
syntax no. 1 above). The "<block>:<param>" item is always listed nps-times in the file,
which allows seamless switching of the sci parameters syntax without modifying the file.

Consider using the SILO block if working with only a few values.

Inputs
ui i-th analog input signal, i = 0, . . . , 15 double

ips Parameter set index (numbered from zero) long

SET Set the parameters of the ips parameter set according to the values
of the ui inputs. The values can be found at the yi outputs after a
successful operation.

bool

GET Get the parameters of the ips parameter set. The values can be found
at the yi outputs after a successful operation.

bool

SAVE Save the ips parameter set to a file on the target device bool

LOAD Load the ips parameter set from a file on the target device bool

Outputs
yi i-th analog output signal, i = 0, . . . , 15 double

E Error flag bool

off . . . No error
on An error occurred (see iE)

323

iE Error or warning code of the last operation long

0 Operation successful
1 Fatal error of the Matlab system (only in Simulink), the

block is no longer executed
2 Error opening the file for reading (LOAD operation)
3 Error opening the file for writing (SAVE operation)
4 Incorrect file format
5 The ips parameter set not found in the file
6 Parameter not found in the configuration, name mismatch

(LOAD operation)
7 Unexpected end of file
8 Error writing to file (disk full?)
9 Parameter syntax error (the ’:’ character not found)
10 Only whitespace in the parameter name
11 Error creating the backup file
12 Error obtaining the parameter value by the GET operation

(non-existing parameter?)
13 Error setting the parameter value by the SET operation

(non-existing parameter?)
14 Timeout during obtaining/setting the parameter
15 The specified parameter is read-only
16 The ips parameter is out of range

Parameters
nps Number of parameter sets ↓1 ↑16 �1 long

ips0 Index of parameter set to load and set during the block initialization.
No set is read for ips0 < 0 or ips0 ≥ nps ↓-1 ↑15

long

iprec Precision (number of digits) for storing the values of double type in
a file ↓2 ↑15 �12

long

icolw Requested column width in the status file. Spaces are appended to
the parameter value when necessary. ↓0 ↑22

long

fname Name of the file the SAVE and LOAD operations work with �status string

broot Root block in hierarchy, inserted at the beginning of all sci
parameters, see the description above �.

string

sci Strings defining the connection of ui inputs and yi outputs to the
parameters, i = 0, . . . , 15, see details above

string

324 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

SILO – Save input value, load output value

Block Symbol Licence: STANDARD

u
SAVE
LOAD

y
E
iE

SILO

Function Description
The SILO block can be used to export or import a single value to/from a file. The value
is saved when a rising edge (off→on) occurs at the SAVE input and the value is also set
to the y output. The value is loaded at startup and when a rising edge (off→on) occurs
at the LOAD input. If an error occurs, a substitute value yerr is set to the y output.

Alternatively it is possible to write or read the value continuously if the corresponding
flag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter defines the location of the file on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Use the SGSLP function block for advanced and complex operations.

Inputs
u Input signal double

SAVE Save value to file bool

LOAD Load value from file bool

Parameters
fname Name of persistent storage file string

CSF Flag for continuous saving bool

CLF Flag for continuous loading bool

yerr Substitute value for an error case double

Outputs
y Output signal double

E Error flag bool

iE Error code of the operating system long

325

SILOS – Save input string, load output string

Block Symbol Licence: STANDARD

su
SAVE
LOAD
APPEND

sy

E

iE

SILOS

Function Description
The SILOS block can be used to export or import a string to/from a file. The string is
saved when a rising edge (off→on) occurs at the SAVE input and the string is also set to
the sy output. The string is loaded at startup and when a rising edge (off→on) occurs
at the LOAD input.

If a logical true (on) is brought to the APPEND input, the input string is added to the
end of the file when it is saved. This mode is useful for logging events into text files. This
input signal has no effect on loading from the file.

The LLO parameter is intended for choosing whether to load the entire file (off) or
its last line only (on).

Alternatively it is possible to write or read the string continuously if the corresponding
flag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter defines the location of the file on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Inputs
su String input of the block �0 string

SAVE Save string to file bool

LOAD Load string from file bool

APPEND Append saved string to file bool

Outputs
sy String output of the block string

E Error indicator bool

off . . . No error
on An error occurred

iE Error code of the operating system long

326 CHAPTER 12. PARAM – BLOCKS FOR PARAMETER HANDLING

Parameters
fname Name of persistent storage file string

CSF Continuous saving bool

CLF Continuous loading bool

LLO Last line only loading bool

nmax Allocated size of string ↓0 ↑65520 long

Chapter 13

MODEL – Dynamic systems
simulation

Contents
CDELSSM – Continuous state space model of a linear system with
time delay . 328
CSSM – Continuous state space model of a linear system 331
DDELSSM – Discrete state space model of a linear system with time
delay . 333
DSSM – Discrete state space model of a linear system 335
FMUCS – ∗ Import modelu FMU CS (pro Co-Simulation) 337
FMUINFO – ∗ Imformace o importovaném modelu FMU 340
FOPDT – First order plus dead-time model 341
MDL – Process model . 342
MDLI – Process model with input-defined parameters 343
MVD – Motorized valve drive . 344
SOPDT – Second order plus dead-time model 345

327

328 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

CDELSSM – Continuous state space model of a linear system
with time delay

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15
y16

CDELSSM

Function Description
The CDELSSM block (Continuous State Space Model with time DELay) simulates behavior
of a linear system with time delay del

dx(t)

dt
= Acx(t) +Bcu(t− del), x(0) = x0

y(t) = Ccx(t) +Dcu(t),

where x(t) ∈ Rn is the state vector, x0 ∈ Rn is the initial value of the state vector,
u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector. The matrix Ac ∈ Rn×n is
the system dynamics matrix, Bc ∈ Rn×m is the input matrix, Cc ∈ Rp×n is the output
matrix and Dc ∈ Rp×m is the direct transmission (feedthrough) matrix.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is first converted to the discrete (discretized) state space model

x((k + 1)T) = Adx(kT) +Bd1u((k − d)T) +Bd2u((k − d+ 1)T), x(0) = x0

y(kT) = Ccx(kT) +Dcu(kT),

where k ∈ {1, 2, . . .} is the simulation step, T is the execution period of the block in
seconds and d is a delay in simulation step such that (d−1)T < del ≤ d.T . The period T

329

is not entered in the block, it is determined automatically as a period of the task (TASK,
QTASK nebo IOTASK) containing the block.

If the input u(t) is changed only in the moments of sampling and between two con-
secutive sampling instants is constant, i.e. u(t) = u(kT) for t ∈ [kT, (k + 1)T), then the
matrices Ad, Bd1 and Bd2 are determined by

Ad = eAcT

Bd1 = eAc(T−∆)

∫ ∆

0
eAcτBcdτ

Bd2 =

∫ T−∆

0
eAcτBcdτ,

where ∆ = del − (d− 1)T .
Computation of discrete matrices Ad, Bd1 and Bd2 is based on a method described

in [6], which uses Padé approximations of matrix exponential and its integral and scaling
technique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its initial value

x0. The simulation continues on the falling edge of R1 (on→off).
bool

HLD Simulation output holds its value if HLD=on. bool

u1..u16 Simulated system inputs. First m simulation inputs are used where m
is the number of columns of the matrix Bc.

double

Outputs
iE Block error code error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
-510 . . the model is badly conditioned (some working matrix is

singular or nearly singular)
xxx . . . error code xxx of REX, see appendix C for details

y1..y16 Simulated system outputs. First p simulation outputs are used where
p is the number of rows of the matrix Cc.

double

Parameters
UD Matrix Dc usage flag. If UD=offthen the Dc matrix is not used for

simulation (simulation behaves as if the Dc matrix is zero).
bool

del Model time delay [s]. ↓0.0 double

is Order of the Padé approximation of the matrix exponential for the
computation of the discretized system matrices. ↓0 ↑4 �2

long

330 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

eps Required accuracy of the Padé approximation. ↓0.0 ↑1.0 �0.0 double

Ac Matrix (n× n) of the continuous linear system dynamics. double

Bc Input matrix (n×m) of the continuous linear system. double

Cc Output matrix (p× n) of the continuous linear system. double

Dc Direct transmission (feedthrough) matrix (p × m) of the continuous
linear system. The matrix is used only if the parameter UD=on. If
UD=off, the dimensions of the Dc matrix are not checked.

double

x0 Initial value of the state vector (of dimension n) of the continuous
linear system.

double

331

CSSM – Continuous state space model of a linear system

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15
y16

CSSM

Function Description
The CSSM block (Continuous State Space Model) simulates behavior of a linear system

dx(t)

dt
= Acx(t) +Bcu(t), x(0) = x0

y(t) = Ccx(t) +Dcu(t),

where x(t) ∈ Rn is the state vector, x0 ∈ Rn is the initial value of the state vector,
u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector. The matrix Ac ∈ Rn×n is
the system dynamics matrix, Bc ∈ Rn×m is the input matrix, Cc ∈ Rp×n is the output
matrix and Dc ∈ Rp×m is the direct transmission (feedthrough) matrix.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is first converted to the discrete (discretized) state space model

x((k + 1)T) = Adx(kT) +Bdu(kT), x(0) = x0

y(kT) = Ccx(kT) +Dcu(kT),

where k ∈ {1, 2, . . .} is the simulation step, T is the execution period of the block in
seconds. The period T is not entered in the block, it is determined automatically as a
period of the task (TASK, QTASK nebo IOTASK) containing the block.

If the input u(t) is changed only in the moments of sampling and between two con-
secutive sampling instants is constant, i.e. u(t) = u(kT) for t ∈ [kT, (k + 1)T), then the

332 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

matrices Ad and Bd are determined by

Ad = eAcT

Bd =

∫ T

0
eAcτBcdτ

Computation of discrete matrices Ad and Bd is based on a method described in [6],
which uses Padé approximations of matrix exponential and its integral and scaling tech-
nique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its initial value

x0. The simulation continues on the falling edge of R1 (on→off).
bool

HLD Simulation output holds its value if HLD=on. bool

u1..u16 Simulated system inputs. First m simulation inputs are used where m
is the number of columns of the matrix Bc.

double

Outputs
iE Block error code error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
-510 . . the model is badly conditioned (some working matrix is

singular or nearly singular)
xxx . . . error code xxx of REX, see appendix C for details

y1..y16 Simulated system outputs. First p simulation outputs are used where
p is the number of rows of the matrix Cc.

double

Parameters
UD Matrix Dc usage flag. If UD=offthen the Dc matrix is not used for

simulation (simulation behaves as if the Dc matrix is zero).
bool

is Order of the Padé approximation of the matrix exponential for the
computation of the discretized system matrices. ↓0 ↑4 �2

long

eps Required accuracy of the Padé approximation. ↓0.0 ↑1.0 �0.0 double

Ac Matrix (n× n) of the continuous linear system dynamics. double

Bc Input matrix (n×m) of the continuous linear system. double

Cc Output matrix (p× n) of the continuous linear system. double

Dc Direct transmission (feedthrough) matrix (p × m) of the continuous
linear system. The matrix is used only if the parameter UD=on. If
UD=off, the dimensions of the Dc matrix are not checked.

double

x0 Initial value of the state vector (of dimension n) of the continuous
linear system.

double

333

DDELSSM – Discrete state space model of a linear system with
time delay

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15
y16

DDELSSM

Function Description
The DDELSSM block (Discrete State Space Model with time DELay) simulates behavior
of a linear system with time delay del

x(k + 1) = Adx(k) +Bdu(k − d), x(0) = x0

y(k) = Cdx(k) +Ddu(k),

where k is the simulation step, x(k) ∈ Rn is the state vector, x0 ∈ Rn is the initial
value of the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the output vector.
The matrix Ad ∈ Rn×n is the system dynamics matrix, Bd ∈ Rn×m is the input matrix,
Cd ∈ Rp×n is the output matrix and Dd ∈ Rp×m is the direct transmission (feedthrough)
matrix. Number of steps of the delay d is the largest integer such that d.T ≤ del, where
T is the block execution period.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its initial value

x0. The simulation continues on the falling edge of R1 (on→off).
bool

334 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

HLD Simulation output holds its value if HLD=on. bool

u1..u16 Simulated system inputs. First m simulation inputs are used where m
is the number of columns of the matrix Bd.

double

Outputs
iE Block error code error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
xxx . . . error code xxx of REX, see appendix C for details

y1..y16 Simulated system outputs. First p simulation outputs are used where
p is the number of rows of the matrix Cd.

double

Parameters
UD Matrix Dd usage flag. If UD=offthen the Dd matrix is not used for

simulation (simulation behaves as if the Dd matrix is zero).
bool

del Model time delay [s]. ↓0.0 double

Ad Matrix (n× n) of the discrete linear system dynamics. double

Bd Input matrix (n×m) of the discrete linear system. double

Cd Output matrix (p× n) of the discrete linear system. double

Dd Direct transmission (feedthrough) matrix (p×m) of the discrete linear
system. The matrix is used only if the parameter UD=on. If UD=off,
the dimensions of the Dd matrix are not checked.

double

x0 Initial value of the state vector (of dimension n) of the discrete linear
system.

double

335

DSSM – Discrete state space model of a linear system

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15
y16

DSSM

Function Description
The DSSM block (Discrete State Space Model) simulates behavior of a linear system

x(k + 1) = Adx(k) +Bdu(k), x(0) = x0

y(k) = Cdx(k) +Ddu(k),

where k is the simulation step, x(k) ∈ Rn is the state vector, x0 ∈ Rn is the initial
value of the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the output vector.
The matrix Ad ∈ Rn×n is the system dynamics matrix, Bd ∈ Rn×m is the input matrix,
Cd ∈ Rp×n is the output matrix and Dd ∈ Rp×m is the direct transmission (feedthrough)
matrix.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs
R1 Reset signal. When R1 = on, the state vector x is set to its initial value

x0. The simulation continues on the falling edge of R1 (on→off).
bool

HLD Simulation output holds its value if HLD=on. bool

u1..u16 Simulated system inputs. First m simulation inputs are used where m
is the number of columns of the matrix Bd.

double

336 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

Outputs
iE Block error code error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
xxx . . . error code xxx of REX, see appendix C for details

y1..y16 Simulated system outputs. First p simulation outputs are used where
p is the number of rows of the matrix Cd.

double

Parameters
UD Matrix Dd usage flag. If UD=offthen the Dd matrix is not used for

simulation (simulation behaves as if the Dd matrix is zero).
bool

Ad Matrix (n× n) of the discrete linear system dynamics. double

Bd Input matrix (n×m) of the discrete linear system. double

Cd Output matrix (p× n) of the discrete linear system. double

Dd Direct transmission (feedthrough) matrix (p×m) of the discrete linear
system. The matrix is used only if the parameter UD=on. If UD=off,
the dimensions of the Dd matrix are not checked.

double

x0 Initial value of the state vector (of dimension n) of the discrete linear
system.

double

337

FMUCS – ∗ Import modelu FMU CS (pro Co-Simulation)

Block Symbol Licence: ADVANCED

FMUCS

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
yFMU

y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15
y16

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
R1 Reset bloku bool

HLD Podržení aktuálního stavu modelu bool

u1 Analogový vstupní signál double

u2 Analogový vstupní signál double

u3 Analogový vstupní signál double

u4 Analogový vstupní signál double

u5 Analogový vstupní signál double

u6 Analogový vstupní signál double

u7 Analogový vstupní signál double

u8 Analogový vstupní signál double

u9 Analogový vstupní signál double

u10 Analogový vstupní signál double

u11 Analogový vstupní signál double

u12 Analogový vstupní signál double

u13 Analogový vstupní signál double

u14 Analogový vstupní signál double

u15 Analogový vstupní signál double

u16 Analogový vstupní signál double

338 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

Parameters
tstop Koncový čas simulace ↓0.000001 �1.0 double

eps Přesnost aproximace ↓0.0 ↑1.0 �0.000001 double

loglevel Úroveň protokolování knihovny FMI do systémového logu ↓0 ↑7 �2 long

0 Nic
1 Fatální
2 Chyba
3 Varování
4 Info
5 Podrobný
6 Ladění
7 Všechno

SelPars Seznam vybraných parametrů FMU string

TUNEALLP Považuj všechny vybrané parametry za laditelné parametry bool

p1 Analogový parametr bloku double

p2 Analogový parametr bloku double

p3 Analogový parametr bloku double

p4 Analogový parametr bloku double

p5 Analogový parametr bloku double

p6 Analogový parametr bloku double

p7 Analogový parametr bloku double

p8 Analogový parametr bloku double

p9 Analogový parametr bloku double

p10 Analogový parametr bloku double

p11 Analogový parametr bloku double

p12 Analogový parametr bloku double

p13 Analogový parametr bloku double

p14 Analogový parametr bloku double

p15 Analogový parametr bloku double

p16 Analogový parametr bloku double

Outputs
iE Kód chyby error

yFMU Výstupní odkaz na instanci FMU reference

y1 Analogový výstupní signál double

y2 Analogový výstupní signál double

y3 Analogový výstupní signál double

y4 Analogový výstupní signál double

y5 Analogový výstupní signál double

y6 Analogový výstupní signál double

y7 Analogový výstupní signál double

y8 Analogový výstupní signál double

y9 Analogový výstupní signál double

339

y10 Analogový výstupní signál double

y11 Analogový výstupní signál double

y12 Analogový výstupní signál double

y13 Analogový výstupní signál double

y14 Analogový výstupní signál double

y15 Analogový výstupní signál double

y16 Analogový výstupní signál double

340 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

FMUINFO – ∗ Imformace o importovaném modelu FMU

Block Symbol Licence: ADVANCED

FMUINFO

uFMU

iE

InNames

OutNames

ParNames

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Vstup
uFMU Vstupní odkaz na instanci FMU reference

Parameters
SelPars Seznam vybraných parametrů FMU string

Separ Oddělovač jmen v řetězcových výstupech �, string

Outputs
iE Kód chyby error

InNames Seznam jmen vstupů FMU string

OutNames Seznam jmen výstupů FMU string

ParNames Seznam jmen vybraných parametrů FMU string

341

FOPDT – First order plus dead-time model

Block Symbol Licence: STANDARD

u y

FOPDT

Function Description
The FOPDT block is a discrete simulator of a first order continuous-time system with time
delay, which can be described by the transfer function below:

P (s) =
k0

(tau · s+ 1)
· e−del·s

The exact discretization at the sampling instants is used for discretization of the
P (s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the FOPDT block.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
k0 Static gain �1.0 double

del Dead time [s] double

tau Time constant �1.0 double

nmax Size (number of samples) of delay buffer (used for internal memory
allocation) ↓1 ↑10000000 �10

long

342 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

MDL – Process model

Block Symbol Licence: STANDARD

u y

MDL

Function Description
The MDL block is a discrete simulator of continuous-time system with transfer function

F (s) =
K0e

−Ds

(τ1s+ 1)(τ2s+ 1)
,

where K0 > 0 is the static gain k0, D ≥ 0 is the time-delay del and τ1, τ2 > 0 are the
system time-constants tau1 and tau2.

Input
u Analog input of the block double

Output
y Analog output of the block double

Parameters
k0 Static gain �1.0 double

del Dead time [s] double

tau1 The first time constant �1.0 double

tau2 The second time constant �2.0 double

nmax Size (number of samples) of delay buffer (used for internal memory
allocation) ↓1 ↑10000000 �10

long

343

MDLI – Process model with input-defined parameters

Block Symbol Licence: STANDARD

u
k0
del
tau1
tau2

y

MDLI

Function Description
The MDLI block is a discrete simulator of continuous-time system with transfer function

F (s) =
K0e

−Ds

(τ1s+ 1)(τ2s+ 1)
,

where K0 > 0 is the static gain k0, D ≥ 0 is the time-delay del and τ1, τ2 > 0 are the
system time-constants tau1 and tau2. In contrary to the MDL block the system is time
variant. The system parameters are determined by the input signals.

Inputs
u Analog input of the block double

k0 Static gain double

del Dead time [s] double

tau1 The first time constant double

tau2 The second time constant double

Output
y Analog output of the block double

Parameters
nmax Size (number of samples) of delay buffer (used for internal memory

allocation) ↓1 ↑10000000 �10
long

344 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

MVD – Motorized valve drive

Block Symbol Licence: STANDARD

UP

DN

y
HS
LS

MVD

Function Description
The MVD block simulates a servo valve. The UP (DN) input is a binary command for opening
(closing) the valve at a constant speed 1/tv, where tv is a parameter of the block. The
opening (closing) continues for UP = on (DN = on) until the full open y = hilim (full
closed y = lolim) position is reached. The full open (full closed) position is signalized
by the end switch HS (LS). The initial position at start-up is y = y0. If UP = DN = on or
UP = DN = off, then the position of the valve remains unchanged (neither opening nor
closing).

Inputs
UP Open bool

DN Close bool

Outputs
y Valve position double

HS Upper end switch bool

LS Lower end switch bool

Parameters
y0 Initial valve position double

tv Time required for transition between y = 0 and y = 1 [s] �10.0 double

hilim Upper limit position (open) �1.0 double

lolim Lower limit position (closed) double

345

SOPDT – Second order plus dead-time model

Block Symbol Licence: STANDARD

u y

SOPDT

Function Description
The SOPDT block is a discrete simulator of a second order continuous-time system with
time delay, which can be described by one of the transfer functions below. The type of
the model is selected by the itf parameter.

itf = 1 : P (s) =
pb1 · s+ pb0

s2 + pa1 · s+ pa0
· e−del·s

itf = 2 : P (s) =
k0 (tau · s+ 1)

(tau1 · s+ 1) (tau2 · s+ 1)
· e−del·s

itf = 3 : P (s) =
k0 · om2 · (tau/om · s+ 1)

(s2 + 2 · xi · om · s+ om2)
· e−del·s

itf = 4 : P (s) =
k0 (tau · s+ 1)

(tau1 · s+ 1) s
· e−del·s

For simulation of first order plus dead time systems (FOPDT) use the LLC block with
parameter a set to zero.

The exact discretization at the sampling instants is used for discretization of the
P (s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the SOPDT block.

Input
u Analog input of the block double

Output
y Analog output of the block double

346 CHAPTER 13. MODEL – DYNAMIC SYSTEMS SIMULATION

Parameters
itf Transfer function form �1 long

1 A general form
2 A form with real poles
3 A form with complex poles
4 A form with integrator

k0 Static gain �1.0 double

tau Numerator time constant double

tau1 The first time constant �1.0 double

tau2 The second time constant �1.0 double

om Natural frequency �1.0 double

xi Relative damping coefficient �1.0 double

pb0 Numerator coefficient: s0 �1.0 double

pb1 Numerator coefficient: s1 �1.0 double

pa0 Denominator coefficient: s0 �1.0 double

pa1 Denominator coefficient: s1 �1.0 double

del Dead time [s] double

nmax Size (number of samples) of delay buffer (used for internal memory
allocation) ↓1 ↑10000000 �10

long

Chapter 14

MATRIX – Blocks for matrix and
vector operations

Contents
CNA – Array (vector/matrix) constant 349
MB_DASUM – Sum of the absolute values 350
MB_DAXPY – Performs y := a*x + y for vectors x,y 351
MB_DCOPY – Copies vector x to vector y 353
MB_DDOT – Dot product of two vectors 355
MB_DGEMM – Performs C := alpha*op(A)*op(B) + beta*C, where
op(X) = X or op(X) = X^T . 357
MB_DGEMV – Performs y := alpha*A*x + beta*y or y := alpha*A^T*x
+ beta*y . 359
MB_DGER – Performs A := alpha*x*y^T + A 362
MB_DNRM2 – Euclidean norm of a vector 364
MB_DROT – Plain rotation of a vector 365
MB_DSCAL – Scales a vector by a constant 367
MB_DSWAP – Interchanges two vectors 369
MB_DTRMM – Performs B := alpha*op(A)*B or B := alpha*B*op(A),
where op(X) = X or op(X) = X^T for triangular matrix A . . . 371
MB_DTRMV – Performs x := A*x or x := A^T*x for triangular
matrix A . 373
MB_DTRSV – Solves one of the system of equations A*x = b or
A^T*x = b for triangular matrix A 375
ML_DGEBAK – Backward transformation to ML_DGEBAL of left
or right eigenvectors . 377
ML_DGEBAL – Balancing of a general real matrix 379
ML_DGEBRD – Reduces a general real matrix to bidiagonal form by
an orthogonal transformation . 381

347

348CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGECON – Estimates the reciprocal of the condition number of
a general real matrix . 383
ML_DGEES – Computes the eigenvalues, the Schur form, and, op-
tionally, the matrix of Schur vectors 386
ML_DGEEV – Computes the eigenvalues and, optionally, the left
and/or right eigenvectors . 388
ML_DGEHRD – Reduces a real general matrix A to upper Hessenberg
form . 390
ML_DGELQF – Computes an LQ factorization of a real M-by-N ma-
trix A . 392
ML_DGELSD – Computes the minimum-norm solution to a real lin-
ear least squares problem . 394
ML_DGEQRF – Computes an QR factorization of a real M-by-N
matrix A . 396
ML_DGESDD – Computes the singular value decomposition (SVD)
of a real M-by-N matrix A . 398
ML_DTRSYL – Solves the real Sylvester matrix equation for quasi-
triangular matrices A and B . 400
MX_CTODPA – Discretizes continuous model given by (A,B) to (Ad,Bd)
using Pade approximations . 402
MX_DIM – Matrix/Vector dimensions 404
MX_DSAGET – Set subarray of A into B 405
MX_DSAREF – Set reference to subarray of A into B 407
MX_DSASET – Set A into subarray of B 409
MX_DTRNSP – General matrix transposition: B := alpha*A^T . . . 411
MX_DTRNSQ – Square matrix in-place transposition: A := alpha*A^T413
MX_FILL – Fill real matrix or vector 415
MX_MAT – Matrix data storage block 416
MX_RAND – Randomly generated matrix or vector 417
MX_REFCOPY – Copies input references of matrices A and B to
their output references . 419
MX_VEC – Vector data storage block 420
MX_WRITE – Write a Matrix/Vector to the console/system log . . 421
RTOV – Vector multiplexer . 423
SWVMR – Vector/matrix/reference signal switch 424
VTOR – Vector demultiplexer . 425

349

CNA – Array (vector/matrix) constant

Block Symbol Licence: STANDARD

vec

CNA

Function Description
The block CNA allocates memory for nmax elements of the type etype of the vector/matrix
referenced by the output vec and initializes all elements to data stored in the parameter
acn. If the string parameter filename is not empty then it loads initalization data
from the filename. If the parameter TRN = on then the output reference vec contains
transposed data.

Parameters
filename CSV data file string

TRN Transpose loaded matrix bool

nmax Allocated size of array ↓2 ↑10000000 �100 long

etype Type of elements �8 long

1 Bool
2 Byte
3 Short
4 Long
5 Word
6 DWord
7 Float
8 Double
–-
10 Large

acn Initial array value �[0 1 2 3] double

Output
vec Reference to vector/matrix data reference

350CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DASUM – Sum of the absolute values

Block Symbol Licence: STANDARD

uX

n

incx

HLD

yX

value

E

MB_DASUM

Function Description
The output reference yX is always set to the input reference uX. If HLD = on then nothing
is computed otherwise the BLAS function DASUM is called internally:

value = DASUM(N, uX, INCX);

where the values N and INCX are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx > 0 then INCX is set to incx else INCX is set to 1.

The error flag E is set to on if:

• the reference uX is not defined (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ INCX+ 1 > CNT.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

n Number of processed vector elements long

incx Index increment of vector x long

HLD Hold bool

Outputs
yX Output reference to vector x reference

value Return value of the function double

E Error flag bool

351

MB_DAXPY – Performs y := a*x + y for vectors x,y

Block Symbol Licence: STANDARD

uX

uY

a

n

incx

incy

HLD

yX

yY

E

MB_DAXPY

Function Description
The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DAXPY is
called internally:

DAXPY(N, a, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTY referenced by uY.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy 6= 0 then INCY is set to incy else INCY is set to 1.

The error flag E is set to on if:

• the reference uX or uY is not defined (i.e. input uX or uY is not connected),

• n < 0,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX,

• (N− 1) ∗ |INCY|+ 1 > CNTY.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

uY Input reference to vector y reference

352CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

a Scalar coefficient a double

n Number of processed vector elements long

incx Index increment of vector x long

incy Index increment of vector y long

HLD Hold bool

Outputs
yX Output reference to vector x reference

yY Output reference to vector y reference

E Error indicator bool

353

MB_DCOPY – Copies vector x to vector y

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

HLD

yX

yY

E

MB_DCOPY

Function Description
The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DCOPY is
called internally:

DCOPY(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy 6= 0 then INCY is set to incy else INCY is set to 1.

The error flag E is set to on if:

• the reference uX or uY is not defined (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

uY Input reference to vector y reference

n Number of processed vector elements long

354CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

incx Index increment of vector x long

incy Index increment of vector y long

HLD Hold bool

Outputs
yX Output reference to vector x reference

yY Output reference to vector y reference

E Error indicator bool

355

MB_DDOT – Dot product of two vectors

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

HLD

yX

yY

value

E

MB_DDOT

Function Description
The output references yX and yY are always set to the corresponding input references
uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DDOT is
called internally:

DDOT(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy 6= 0 then INCY is set to incy else INCY is set to 1.

The error flag E is set to on if:

• the reference uX or uY is not defined (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

uY Input reference to vector y reference

n Number of processed vector elements long

356CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

incx Index increment of vector x long

incy Index increment of vector y long

HLD Hold bool

Outputs
yX Output reference to vector x reference

yY Output reference to vector y reference

value Return value of the function double

E Error indicator bool

357

MB_DGEMM – Performs C := alpha*op(A)*op(B) + beta*C,
where op(X) = X or op(X) = X^T

Block Symbol Licence: STANDARD

uA

uB

uC

transa

transb

alpha

beta

HLD

yA

yB

yC

E

MB_DGEMM

Function Description
The output references yA, yB and yC are always set to the corresponding input references
uA, uB and uC. If HLD = on then nothing is computed otherwise the BLAS function DGEMM

is called internally:

DGEMM(sTRANSA, sTRANSB, M, N, KA, alpha, uA, LDA, uB, LDB, beta, uC, LDC);

where parameters of DGEMM are set in the following way:

• Integer inputs transa and transb are mapped to strings sTRANSA and sTRANSB:
{0, 1} → "N", {2} → "T" and {3} → "C".

• M is number of rows of the matrix referenced by uC.

• N is number of columns of the matrix referenced by uC.

• If the input transa is equal to 0 or 1 then KA is number of columns else KA is
number rows of the matrix referenced by uA.

• LDA, LDB and LDC are leading dimensions of matrices referenced by uA, uB and uC.

The error flag E is set to on if:

• the reference uA or uB or uC is not defined (i.e. input uA or uB or uC is not connected),

• transa or transb is less than 0 or greater than 3

• KA 6= KB; if the input transb is equal to 0 or 1 then KB is number of rows else KB is
number of columns of the matrix referenced by uB (i.e. matrices op(A) and op(B)
have to be multipliable).

358CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

• the call of the function DGEMM returns error using the function XERBLA, see the
system log.

See BLAS documentation [7] for more details.

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

uC Input reference to matrix C reference

transa Transposition of matrix A ↓0 ↑3 long

transb Transposition of matrix B ↓0 ↑3 long

alpha Scalar coefficient alpha double

beta Scalar coefficient beta double

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

yC Output reference to matrix C reference

E Error indicator bool

359

MB_DGEMV – Performs y := alpha*A*x + beta*y or y := al-
pha*A^T*x + beta*y

Block Symbol Licence: STANDARD

uA

uX

uY

trans

incx

incy

alpha

beta

HLD

yA

yX

yY

E

MB_DGEMV

Function Description
The output references yA, yX and yY are always set to the corresponding input references
uA, uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DGEMV

is called internally:

DGEMV(sTRANS, M, N, alpha, uA, LDA, uX, INCX, beta, uY, INCY);

where parameters of DGEMV are set in the following way:

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy 6= 0 then INCY is set to incy else INCY is set to 1.

The error flag E is set to on if:

• the reference uA or uX or uY is not defined (i.e. input uA or uX or uY is not connected),

• trans is less than 0 or greater than 3

• the call of the function DGEMV returns error using the function XERBLA, see the
system log.

360CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

See BLAS documentation [7] for more details.

361

Inputs
uA Input reference to matrix A reference

uX Input reference to vector x reference

uY Input reference to vector y reference

trans Transposition of the input matrix ↓0 ↑3 long

incx Index increment of vector x long

incy Index increment of vector y long

alpha Scalar coefficient alpha double

beta Scalar coefficient beta double

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yX Output reference to vector x reference

yY Output reference to vector y reference

E Error indicator bool

362CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DGER – Performs A := alpha*x*y^T + A

Block Symbol Licence: STANDARD

uX

uY

uA

incx

incy

alpha

HLD

yX

yY

yA

E

MB_DGER

Function Description
The output references yX, yY and yA are always set to the corresponding input references
uX, uY and uA. If HLD = on then nothing is computed otherwise the BLAS function DGER

is called internally:

DGER(M, N, alpha, uX, INCX, uY, INCY, uA, LDA);

where parameters of DGER are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy 6= 0 then INCY is set to incy else INCY is set to 1.

• LDA is the leading dimension of matrix referenced by uA.

The error flag E is set to on if:

• the reference uX or uY or uA is not defined (i.e. input uX or uY or uA is not connected),

• the call of the function DGER returns error using the function XERBLA, see the system
log.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

uY Input reference to vector y reference

uA Input reference to matrix A reference

363

incx Index increment of vector x long

incy Index increment of vector y long

alpha Scalar coefficient alpha double

HLD Hold bool

Outputs
yX Output reference to vector x reference

yY Output reference to vector y reference

yA Output reference to matrix A reference

E Error indicator bool

364CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MB_DNRM2 – Euclidean norm of a vector

Block Symbol Licence: STANDARD

uX

n

incx

HLD

yX

value

E

MB_DNRM2

Function Description
The output reference yX is always set to the input reference uX. If HLD = on then nothing
is computed otherwise the BLAS function DNRM2 is called internally:

value = DNRM2(N, uX, INCX);

where the values N and INCX are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx > 0 then INCX is set to incx else INCX is set to 1.

The error flag E is set to on if:

• the reference uX is not defined (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ |INCX|+ 1 > CNT.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

n Number of processed vector elements long

incx Index increment of vector x long

HLD Hold bool

Outputs
yX Output reference to vector x reference

value Return value of the function double

E Error indicator bool

365

MB_DROT – Plain rotation of a vector

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

c

s

HLD

yX

yY

E

MB_DROT

Function Description
The output references yX and yY are always set to the corresponding input references
uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DROT is
called internally:

DROT(N, uX, INCX, uY, INCY, c, s);

where parameters of DROT are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy 6= 0 then INCY is set to incy else INCY is set to 1.

The error flag E is set to on if:

• the reference uX or uY is not defined (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

366CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

uY Input reference to vector y reference

n Number of processed vector elements long

incx Index increment of vector x long

incy Index increment of vector y long

c Scalar coefficient c double

s Scalar coefficient s double

HLD Hold bool

Outputs
yX Output reference to vector x reference

yY Output reference to vector y reference

E Error indicator bool

367

MB_DSCAL – Scales a vector by a constant

Block Symbol Licence: STANDARD

uX

a

n

incx

HLD

yX

E

MB_DSCAL

Function Description
The output references yX is always set to the corresponding input reference uX. If HLD =

on then nothing is computed otherwise the BLAS function DSCAL is called internally:

DSCAL(N, a, uX, INCX);

where parameters of DSCAL are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

The error flag E is set to on if:

• the reference uX is not defined (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ INCX+ 1 > CNT.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

a Scalar coefficient a double

n Number of processed vector elements long

incx Index increment of vector x long

HLD Hold bool

Outputs
yX Output reference to vector x reference

368CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

E Error indicator bool

369

MB_DSWAP – Interchanges two vectors

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

HLD

yX

yY

E

MB_DSWAP

Function Description
The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DSWAP is
called internally:

DSWAP(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy 6= 0 then INCY is set to incy else INCY is set to 1.

The error flag E is set to on if:

• the reference uX or uY is not defined (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [7] for more details.

Inputs
uX Input reference to vector x reference

uY Input reference to vector y reference

n Number of processed vector elements long

370CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

incx Index increment of vector x long

incy Index increment of vector y long

HLD Hold bool

Outputs
yX Output reference to vector x reference

yY Output reference to vector y reference

E Error indicator bool

371

MB_DTRMM – Performs B := alpha*op(A)*B or B := alpha*B*op(A),
where op(X) = X or op(X) = X^T for triangular matrix A

Block Symbol Licence: STANDARD

uA

uB

RSIDE

LUPLO

transa

NDIAG

alpha

HLD

yA

yB

E

MB_DTRMM

Function Description
The output references yA and yB are always set to the corresponding input references uA
and uB. If HLD = on then nothing is computed otherwise the BLAS function DTRMM is
called internally:

DTRMM(sRSIDE, sLUPLO, sTRANSA, sNDIAG, M, N, alpha, uA, LDA, uB, LDB);

where parameters of DTRMM are set in the following way:

• If RSIDE = on then the string sRSIDE is set to "R" else it is set to "L".

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input transa is mapped to the string sTRANSA: {0, 1} → "N", {2} → "T"

and {3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• M is number of rows of the matrix referenced by uB.

• N is number of columns of the matrix referenced by uB.

• LDA and LDB are leading dimensions of matrices referenced by uA and uB.

The error flag E is set to on if:

• the reference uA or uB is not defined (i.e. input uA or uB is not connected),

• transa is less than 0 or greater than 3,

• matrix referenced by uA is not square or is not compatible with the matrix refer-
enced by uB,

372CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

• the call of the function DTRMM returns error using the function XERBLA, see the
system log.

See BLAS documentation [7] for more details.

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

RSIDE Operation is applied from right side bool

LUPLO Matrix A is a lower triangular matrix bool

transa Transposition of matrix A ↓0 ↑3 long

NDIAG Matrix A is not assumed to be unit triangular bool

alpha Scalar coefficient alpha double

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

E Error indicator bool

373

MB_DTRMV – Performs x := A*x or x := A^T*x for triangular
matrix A

Block Symbol Licence: STANDARD

uA

uX

LUPLO

trans

NDIAG

incx

HLD

yA

yX

E

MB_DTRMV

Function Description
The output references yA and yX are always set to the corresponding input references uA
and uX. If HLD = on then nothing is computed otherwise the BLAS function DTRMV is
called internally:

DTRMV(sLUPLO, sTRANS, sNDIAG, N, uA, LDA, uX, INCX);

where parameters of DTRMV are set in the following way:

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• N is number of rows and columns of the square matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

The error flag E is set to on if:

• the reference uA or uX is not defined (i.e. input uA or uX is not connected),

• trans is less than 0 or greater than 3,

• matrix referenced by uA is not square,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX.

374CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

• the call of the function DTRMV returns error using the function XERBLA, see the
system log.

See BLAS documentation [7] for more details.

Inputs
uA Input reference to matrix A reference

uX Input reference to vector x reference

LUPLO Matrix A is a lower triangular matrix bool

trans Transposition of the input matrix ↓0 ↑3 long

NDIAG Matrix A is not assumed to be unit triangular bool

incx Index increment of vector x long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yX Output reference to vector x reference

E Error indicator bool

375

MB_DTRSV – Solves one of the system of equations A*x = b or
A^T*x = b for triangular matrix A

Block Symbol Licence: STANDARD

uA

uX

LUPLO

trans

NDIAG

incx

HLD

yA

yX

E

MB_DTRSV

Function Description
The output references yA and yX are always set to the corresponding input references uA
and uX. If HLD = on then nothing is computed otherwise the BLAS function DTRSV is
called internally:

DTRSV(sLUPLO, sTRANS, sNDIAG, N, uA, LDA, uX, INCX);

where parameters of DTRSV are set in the following way:

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• N is number of rows and columns of the square matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx 6= 0 then INCX is set to incx else INCX is set to 1.

The error flag E is set to on if:

• the reference uA or uX is not defined (i.e. input uA or uX is not connected),

• trans is less than 0 or greater than 3,

• matrix referenced by uA is not square,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX.

376CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

• the call of the function DTRMV returns error using the function XERBLA, see the
system log.

See BLAS documentation [7] for more details.

Inputs
uA Input reference to matrix A reference

uX Input reference to vector x reference

LUPLO Matrix A is a lower triangular matrix bool

trans Transposition of the input matrix ↓0 ↑3 long

NDIAG Matrix A is not assumed to be unit triangular bool

incx Index increment of vector x long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yX Output reference to vector x reference

E Error indicator bool

377

ML_DGEBAK – Backward transformation to ML_DGEBAL of
left or right eigenvectors

Block Symbol Licence: MATRIX

uSCALE

uV

job

RSIDE

ilo

ihi

HLD

ySCALE

yV

E

info

ML_DGEBAK

Function Description
The output references ySCALE and yV are always set to the corresponding input references
uSCALE and uV. If HLD = on then nothing is computed otherwise the LAPACK function
DGEBAK is called internally:

DGEBAK(sJOB, sRSIDE, N, ilo, IHI, uSCALE, M, uV, LDV, info);

where parameters of DGEBAK are set in the following way:

• Integer input job is mapped to the string sJOB: {0, 1} → "N", {2} → "P", {3} →
"S" and {4} → "B".

• If RSIDE = on then the string sRSIDE is set to "R" else it is set to "L".

• N is number of elements of the vector referenced by uSCALE.

• If the input ihi 6= 0 then IHI is set to ihi else IHI is set to N− 1.

• M is number of columns of the matrix referenced by uV.

• LDV is the leading dimension of the matrix referenced by uV.

• info is return code from the function DGEBAK.

The error flag E is set to on if:

• the reference uSCALE or uV is not defined (i.e. input uSCALE or uV is not connected),

• the call of the function DGEBAK returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [8] for more details.

378CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Inputs
uSCALE Input reference to vector SCALE reference

uV Reference to matrix of right or left eigenvectors to be transformed reference

job Type of backward transformation required ↓0 ↑4 long

RSIDE Operation is applied from right side bool

ilo Zero based low row and column index of working submatrix long

ihi Zero based high row and column index of working submatrix long

HLD Hold bool

Outputs
ySCALE Output reference to vector SCALE reference

yV Reference to matrix of transformed right or left eigenvectors reference

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

379

ML_DGEBAL – Balancing of a general real matrix

Block Symbol Licence: MATRIX

uA

uSCALE

job

HLD

yA

ySCALE

ilo

ihi

E

info

ML_DGEBAL

Function Description
The output references yA and ySCALE are always set to the corresponding input references
uA and uSCALE. If HLD = on then nothing is computed otherwise the LAPACK function
DGEBAL is called internally:

DGEBAL(sJOB, N, uA, LDA, ilo, ihi, uSCALE, info);

where parameters of DGEBAL are set in the following way:

• Integer input job is mapped to the string sJOB: {0, 1} → "N", {2} → "P", {3} →
"S" and {4} → "B".

• N is number of columns of the square matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• ilo and ihi are returned low and high row and column indices of the balanced
submatrix of the matrix referenced by uA.

• info is return code from the function DGEBAL.

The error flag E is set to on if:

• the reference uA or uSCALE is not defined (i.e. input uA or uSCALE is not connected),

• matrix referenced by uA is not square,

• number of elements of the vector referenced by uSCALE is less than N.

• the call of the function DGEBAL returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [8] for more details.

380CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Inputs
uA Input reference to matrix A reference

uSCALE Input reference to vector SCALE reference

job Specifies the operations to be performed on matrix A ↓0 ↑4 long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

ySCALE Output reference to vector SCALE reference

ilo Zero based low row and column index of working submatrix long

ihi Zero based high row and column index of working submatrix long

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

381

ML_DGEBRD – Reduces a general real matrix to bidiagonal form
by an orthogonal transformation

Block Symbol Licence: MATRIX

uA

uD

uE

uTAUQ

uTAUP

uWORK

HLD

yA

yD

yE

yTAUQ

yTAUP

yWORK

E

info

ML_DGEBRD

Function Description
The output references yA, yD, yE, yTAUQ, yTAUP and yWORK are always set to the corre-
sponding input references uA, uD, uE, uTAUQ, uTAUP and uWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEBRD is called internally:

DGEBRD(M, N, uA, LDA, uD, uE, uTAUQ, uTAUP, uWORK, info);

where parameters of DGEBRD are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• info is return code from the function DGEBRD.

The error flag E is set to on if:

• the reference uA or uD or uE or uTAUQ or uTAUP or uWORK is not defined (i.e. input
uA or uD or uE or uTAUQ or uTAUP or uWORK is not connected),

• number of elements of any vector referenced by uD, uTAUQ and uTAUP is less than
MINMN, where MINMN is minimum from M and N,

• number of elements of the vector referenced by uE is less than MINMN− 1,

• the call of the function DGEBRD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [8] for more details.

382CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Inputs
uA Input reference to matrix A reference

uD Diagonal elements of the bidiagonal matrix B reference

uE Off-diagonal elements of the bidiagonal matrix B reference

uTAUQ Reference to a vector of scalar factors of the elementary reflectors
which represent the orthogonal matrix Q

reference

uTAUP Reference to a vector of scalar factors of the elementary reflectors
which represent the orthogonal matrix P

reference

uWORK Input reference to working vector WORK reference

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yD Output reference to D reference

yE Output reference to E reference

yTAUQ Output reference to TAUQ reference

yTAUP Output reference to TAUP reference

yWORK Output reference to working vector WORK reference

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

383

ML_DGECON – Estimates the reciprocal of the condition number
of a general real matrix

Block Symbol Licence: MATRIX

uA

uWORK

uIWORK

INORM

anorm

HLD

yA

yWORK

yIWORK

rcond

E

info

ML_DGECON

Function Description
The output references yA, yWORK and yIWORK are always set to the corresponding input
references uA, uWORK and uIWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGECON is called internally:

DGECON(sINORM, N, uA, LDA, anorm, rcond, uWORK, uIWORK, info);

where parameters of DGECON are set in the following way:

• If INORM = on then the string sINORM is set to "I" else it is set to "1".

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• rcond is returned reciprocal value of the condition number of the matrix referenced
by uA.

• info is return code from the function DGECON.

The error flag E is set to on if:

• the reference uA or uWORK or uIWORK is not defined (i.e. input uA or uWORK or uIWORK
is not connected),

• the matrix referenced by uA is not square,

• number of elements of the vector referenced by uWORK is less than 4 ∗ N,

• number of elements of the integer vector referenced by uIWORK is less than N,

• the call of the function DGECON returns error using the function XERBLA, see the
return code info and system log.

384CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

See LAPACK documentation [8] for more details.

385

Inputs
uA Input reference to matrix A reference

uWORK Input reference to working vector WORK reference

uIWORK Input reference to integer working vector WORK reference

INORM Use Infinity-norm bool

anorm Norm of the original matrix A double

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yWORK Output reference to working vector WORK reference

yIWORK Output reference to integer working vector WORK reference

rcond The reciprocal of the condition number of the matrix A double

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

386CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGEES – Computes the eigenvalues, the Schur form, and,
optionally, the matrix of Schur vectors

Block Symbol Licence: MATRIX

uA

uWR

uWI

uVS

uWORK

uBWORK

uT

JOBVS

SORT

HLD

yA

yWR

yWI

yVS

yWORK

yBWORK

yT

sdim

E

info

ML_DGEES

Function Description
The output references yA, yWR, yWI, yVS, yWORK and yBWORK are always set to the corre-
sponding input references uA, uWR, uWI, uVS, uWORK and uBWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEES is called internally:

DGEES(sJOBVS, sSORT, SELECT, N, uA, LDA, sdim, uWR, uWI, uVS, LDVS,uWORK,

LWORK, uBWORK, info);

where parameters of DGEES are set in the following way:

• If JOBVS = on then the string sJOBVS is set to "V" else it is set to "N".

• If SORT = on then the string sSORT is set to "S" else it is set to "N".

• SELECT is the reference to Boolean eigenvalues sorting function which in this func-
tion block returns always true (i.e. on).

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• sdim is returned number of eigenvalues for which the function SELECT is true.

• LDVS is the leading dimension of the matrix referenced by uVS.

• LWORK is number of elements in the vector referenced by uWORK.

• info is return code from the function DGEES.

387

The error flag E is set to on if:

• the reference uA or uWR or uWI or uVS or uWORK or uBWORK is not defined (i.e. input
uA or uWR or uWI or uVS or uWORK or uBWORK is not connected),

• the matrix referenced by uA is not square,

• number of elements of any vector referenced by uWR, uWI and uBWORK is less than
N,

• number of columns of the matrix referenced by uVS is not equal to N,

• the call of the function DGEES returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [8] for more details.

Inputs
uA Input reference to matrix A reference

uWR Input reference to vector of real parts of eigenvalues reference

uWI Input reference to vector of imaginary parts of eigenvalues reference

uVS Input reference to orthogonal matrix of Schur vectors reference

uWORK Input reference to working vector WORK reference

uBWORK Input reference to Boolean working vector WORK reference

JOBVS If true then Schur vectors are computed bool

SORT If true then eigenvalues are sorted bool

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yWR Output reference to vector of real parts of eigenvalues reference

yWI Output reference to vector of imaginary parts of eigenvalues reference

yVS Output reference to VS reference

yWORK Output reference to working vector WORK reference

yBWORK Output reference to Boolean working vector WORK reference

sdim If SORT then number of eigenvalues for which SELECT is true else 0 long

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

388CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGEEV – Computes the eigenvalues and, optionally, the left
and/or right eigenvectors

Block Symbol Licence: MATRIX

uA

uWR

uWI

uVL

uVR

uWORK

uT

JOBVL

JOBVR

HLD

yA

yWR

yWI

yVL

yVR

yWORK

yT

E

info

ML_DGEEV

Function Description
The output references yA, yWR, yWI, yVL, yVR and yWORK are always set to the corre-
sponding input references uA, uWR, uWI, uVL, uVR and uWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEEV is called internally:

DGEEV(sJOBVL, sJOBVR, N, uA, LDA, uWR, uWI, uVL, LDVL, uVR, LDVR,

uWORK, LWORK, info);

where parameters of DGEEV are set in the following way:

• If JOBVL = on then the string sJOBVL is set to "V" else it is set to "N".

• If JOBVR = on then the string sJOBVR is set to "V" else it is set to "N".

• N is number of columns of the matrix referenced by uA.

• LDA, LDVL and LDVR are leading dimensions of the matrices referenced by uA, uVL
and uVR.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEEV.

The error flag E is set to on if:

• the reference uA or uWR or uWI or uVL or uVR or uWORK is not defined (i.e. input uA
or uWR or uWI or uVL or uVR or uWORK is not connected),

• the matrix referenced by uA is not square,

389

• number of elements of vectors referenced by uWR or uWI is less than N,

• number of columns of matrices referenced by uVL or uVR is not equal to N,

• the call of the function DGEEV returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [8] for more details.

Inputs
uA Input reference to matrix A reference

uWR Input reference to vector of real parts of eigenvalues reference

uWI Input reference to vector of imaginary parts of eigenvalues reference

uVL Input reference to matrix of left eigenvectors reference

uVR Input reference to matrix of right eigenvectors reference

uWORK Input reference to working vector WORK reference

JOBVL If true then left eigenvectors are computed bool

JOBVR If true then right eigenvectors are computed bool

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yWR Output reference to vector of real parts of eigenvalues reference

yWI Output reference to vector of imaginary parts of eigenvalues reference

yVL Output reference to VL reference

yVR Output reference to VR reference

yWORK Output reference to working vector WORK reference

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

390CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGEHRD – Reduces a real general matrix A to upper Hes-
senberg form

Block Symbol Licence: MATRIX

uA

uTAU

uWORK

uT

ilo

ihi

HLD

yA

yTAU

yWORK

yT

E

info

ML_DGEHRD

Function Description
The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGEHRD is called internally:

DGEHRD(N, ilo, IHI, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGEHRD are set in the following way:

• N is number of columns of the square matrix referenced by uA.

• If the input ihi 6= 0 then IHI is set to ihi else IHI is set to N− 1.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEHRD.

The error flag E is set to on if:

• the reference uA or uTAU or uWORK is not defined (i.e. input uA or uTAU or uWORK is
not connected),

• matrix referenced by uA is not square,

• number of elements of the vector referenced by uTAU is less than N− 1.

• the call of the function DGEHRD returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [8] for more details.

391

Inputs
uA Input reference to matrix A reference

uTAU Input reference to vector of scalar factors of the elementary reflectors reference

uWORK Input reference to working vector WORK reference

ilo Zero based low row and column index of working submatrix long

ihi Zero based high row and column index of working submatrix long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yTAU Output reference to vector of scalar factors of the elementary reflectors reference

yWORK Output reference to working vector WORK reference

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

392CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGELQF – Computes an LQ factorization of a real M-by-N
matrix A

Block Symbol Licence: MATRIX

uA

uTAU

uWORK

HLD

yA

yTAU

yWORK

E

info

ML_DGELQF

Function Description
The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGELQF is called internally:

DGELQF(M, N, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGELQF are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGELQF.

The error flag E is set to on if:

• the reference uA or uTAU or uWORK is not defined (i.e. input uA or uTAU or uWORK is
not connected),

• number of elements of the vector referenced by uTAU is less than the minimum of
number of rows and number of columns of the matrix referenced by uA.

• the call of the function DGELQF returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [8] for more details.

393

Inputs
uA Input reference to matrix A reference

uTAU Input reference to vector of scalar factors of the elementary reflectors reference

uWORK Input reference to working vector WORK reference

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yTAU Output reference to vector of scalar factors of the elementary reflectors reference

yWORK Output reference to working vector WORK reference

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

394CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGELSD – Computes the minimum-norm solution to a real
linear least squares problem

Block Symbol Licence: MATRIX

uA

uB

uS

uWORK

uIWORK

uT

rcond

HLD

yA

yB

yS

yWORK

yIWORK

yT

irank

E

info

ML_DGELSD

Function Description
The output references yA, yB, yS, yWORK and yIWORK are always set to the corresponding
input references uA, uB, uS, uWORK and uIWORK. If HLD = on then nothing is computed
otherwise the LAPACK function DGELSD is called internally:

DGELSD(M, N, NRHS, uA, LDA, uB, LDB, uS, rcond, irank,uWORK,

LWORK, uIWORK, info);

where parameters of DGELSD are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• NRHS is number of columns of the matrix referenced by uB.

• LDA and LDB are leading dimensions of the matrices referenced by uA and uB.

• irank is returned effective rank of the matrix referenced by uA.

• LWORK is number of elements in the vector referenced by uWORK.

• info is return code from the function DGELSD.

The error flag E is set to on if:

• the reference uA or uB or uS or uWORK or uIWORK is not defined (i.e. input uA or uB
or uS or uWORK or uIWORK is not connected),

• the number of rows of the matrix referenced by uB is not equal to M,

395

• number of elements of any vector referenced by uS is less than the minimum of M
and N,

• number of elements of the integer vector referenced by uIWORK is not sufficient (see
details in the LAPACK documentation of the function DGELSD),

• the call of the function DGELSD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [8] for more details.

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

uS Input reference to vector of singular values reference

uWORK Input reference to working vector WORK reference

uIWORK Input reference to integer working vector WORK reference

rcond Used to determine the effective rank of A double

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

yS Output reference to vector of singular values reference

yWORK Output reference to working vector WORK reference

yIWORK Output reference to integer working vector WORK reference

irank Effective rank of A long

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

396CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGEQRF – Computes an QR factorization of a real M-by-N
matrix A

Block Symbol Licence: MATRIX

uA

uTAU

uWORK

HLD

yA

yTAU

yWORK

E

info

ML_DGEQRF

Function Description
The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGEQRF is called internally:

DGEQRF(M, N, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGEQRF are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEQRF.

The error flag E is set to on if:

• the reference uA or uTAU or uWORK is not defined (i.e. input uA or uTAU or uWORK is
not connected),

• number of elements of the vector referenced by uTAU is less than the minimum of
number of rows and number of columns of the matrix referenced by uA.

• the call of the function DGEQRF returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [8] for more details.

397

Inputs
uA Input reference to matrix A reference

uTAU Input reference to vector of scalar factors of the elementary reflectors reference

uWORK Input reference to working vector WORK reference

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yTAU Output reference to vector of scalar factors of the elementary reflectors reference

yWORK Output reference to working vector WORK reference

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

398CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DGESDD – Computes the singular value decomposition (SVD)
of a real M-by-N matrix A

Block Symbol Licence: MATRIX

uA

uS

uU

uVT

uWORK

uIWORK

uT

jobz

HLD

yA

yS

yU

yVT

yWORK

yIWORK

yT

E

info

ML_DGESDD

Function Description
The output references yA, yS, yU, yVT, yWORK and yIWORK are always set to the corre-
sponding input references uA, uS, uU, uVT, uWORK and uIWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGESDD is called internally:

DGESDD(sJOBZ, M, N, uA, LDA, uS, uU, LDU, uVT, LDVT, uWORK, LWORK,

uIWORK, info);

where parameters of DGESDD are set in the following way:

• Integer input jobz is mapped to the string sJOBZ: {0, 1} → "A", {2} → "S",
{3} → "O" and {4} → "N".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA, LDU and LDVT are leading dimensions of the matrices referenced by uA, uU and
uVT.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGESDD.

The error flag E is set to on if:

• the reference uA or uS or uU or uVT or uWORK or uIWORK is not defined (i.e. input uA
or uS or uU or uVT or uWORK or uIWORK is not connected),

399

• number of elements of the vector referenced by uS is less than MINMN, the minimum
of number of rows and number of columns of the matrix referenced by uA,

• number of elements of the integer vector referenced by uIWORK is less than 8∗MINMN,

• the call of the function DGESDD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [8] for more details.

Inputs
uA Input reference to matrix A reference

uS Input reference to vector of singular values reference

uU Input reference to matrix containing left singular vectors of A reference

uVT Input reference to matrix containing right singular vectors of A reference

uWORK Input reference to working vector WORK reference

uIWORK Input reference to integer working vector WORK reference

jobz Specifies options for computing long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yS Output reference to vector of singular values reference

yU Output reference to matrix containing left singular vectors of A reference

yVT Output reference to matrix containing right singular vectors of A reference

yWORK Output reference to working vector WORK reference

yIWORK Output reference to integer working vector WORK reference

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

400CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

ML_DTRSYL – Solves the real Sylvester matrix equation for
quasi-triangular matrices A and B

Block Symbol Licence: MATRIX

uA

uB

uC

trana

tranb

isgn

HLD

yA

yB

yC

scale

E

info

ML_DTRSYL

Function Description
The output references yA, yB and yC are always set to the corresponding input references
uA, uB and uC. If HLD = on then nothing is computed otherwise the LAPACK function
DTRSYL is called internally:

DTRSYL(sTRANA, sTRANB, M, N, uA, LDA, uB, LDB, uC, LDC, scale, info);

where parameters of DTRSYL are set in the following way:

• Integer inputs trana and tranb are mapped to strings sTRANA and sTRANB: {0, 1} →
"N", {2} → "T" and {3} → "C".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uB.

• LDA, LDB and LDC are leading dimensions of matrices referenced by uA, uB and uC.

• scale is returned scaling factor to avoid overflow.

• info is return code from the function DTRSYL.

The error flag E is set to on if:

• the reference uA or uB or uC is not defined (i.e. input uA or uB or uC is not connected),

• trana or tranb is less than 0 or greater than 3

• number of columns of the matrix referenced by uA is not equal to M

• number of rows of the matrix referenced by uB is not equal to N

401

• number of rows of the matrix referenced by uC is not equal to N or number of
columns of this matrix is not equal to M,

• the call of the function DTRSYL returns error using the function XERBLA, see the
system log.

See LAPACK documentation [8] for more details.

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

uC Input reference to matrix C reference

trana Transposition of matrix A ↓0 ↑3 long

tranb Transposition of matrix B ↓0 ↑3 long

isgn Sign in the equation (1 or -1) ↓-1 ↑1 long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

yC Output reference to matrix C reference

scale Scale double

E Error indicator bool

info LAPACK function result info. If info = -i, the i=th argument had an
illegal value

long

402CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MX_CTODPA – Discretizes continuous model given by (A,B) to
(Ad,Bd) using Pade approximations

Block Symbol Licence: STANDARD

uA

uB

uAd

uBd

uP

uQ

uR

HLD

yA

yB

yAd

yBd

yP

yQ

yR

E

MX_CTODPA

Function Description

This function block discretizes a continuous state space model using Padé approx-
imations of matrix exponential and its integral and scaling technique ([6]). The used
technique is similar to method 3 Scaling and squaring described in [9].

The output references yA, yB, yAd, yBd, yP , yQ and yR are always set to the corre-
sponding input references uA, uB, uAd, uBd, uP, uQ and uR. If HLD = on then nothing is
computed otherwise the function mCtoD is called internally:

mCtoD(nRes, uAd, uBd, uA, uB, N, M, is, Ts, eps, uP, uQ, uR);

where parameters of mCtoD are set in the following way:

• nRes is return code from the function mCtoD.

• N is number of rows of the square system matrix referenced by uA.

• M is number of columns of the input matrix referenced by uB.

• Ts is sampling period for the discretization, which is equal to sampling period of
the task containing this function block.

The error flag E is set to on if:

• the reference uA or uB or uAd or uBd or uP or uQ or uR is not defined (i.e. input uA
or uB or uAd or uBd or uP or uQ or uR is not connected),

• number of columns of the matrix referenced by uA is not equal to N,

• number of rows of the matrix referenced by uB is not equal to N,

403

• number of elements of any matrix referenced by uAd, uP, uQ or uR is less than N∗N,

• number of elements of the matrix referenced by uBd is less than N ∗ M,

• the return code nRes of the function mCtoD is not equal to zero.

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

uAd Input reference to discretized matrix A reference

uBd Input reference to discretized matrix B reference

uP Input reference to a helper matrix reference

uQ Input reference to a helper matrix reference

uR Input reference to a helper matrix reference

HLD Hold bool

Parameters
is Pade approximation order ↓0 ↑4 �2 long

eps Approximation accuracy ↓0.0 ↑0.001 �0.0 double

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

yAd Output reference to discretized matrix A reference

yBd Output reference to discretized matrix B reference

yP Output reference to a helper matrix reference

yQ Output reference to a helper matrix reference

yR Output reference to a helper matrix reference

E Error indicator bool

404CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MX_DIM – Matrix/Vector dimensions

Block Symbol Licence: STANDARD

uMV

m
n
ld

mn

MX_DIM

Function Description
The function block MX_DIM sets its outputs to the dimenstions of the matrix or vector
referenced by uMV.

Input
uMV Input reference to a matrix or vector reference

Outputs
m Number of matrix rows long

n Number of matrix columns long

ld Leading dimension (>= number of rows) long

mn Count of elements (m*n) long

405

MX_DSAGET – Set subarray of A into B

Block Symbol Licence: STANDARD

uA

uB

uplo

i

j

m

n

HLD

yA

yB

E

MX_DSAGET

Function Description
Generally, the function block MX_DSAGET copies the subarray (submatrix) of matrix ref-
erenced by uA into the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing is copied otherwise the submatrix of matrix refer-
enced by uA starting the row with zero based index I and the column with zero based
index J containing M rows and N columns is copied (with respect to the value of the
input uplo) to the matrix referenced by uB. The mentioned variables have the following
meanings:

• If the input i ≤ 0 then I is set to 0 else if i ≥ MA then I is set to MA− 1 else I is
set to i, where MA is the number of rows of the matrix referenced by uA.

• If the input j ≤ 0 then J is set to 0 else if j ≥ NA then J is set to NA− 1 else J is
set to j, where NA is the number of columns of the matrix referenced by uA.

• Number of copied rows M is set in two stages. First, M is set to minimum of MA− I

and number of rows of the matrix referenced by uB. Second, if m > 0 then M is set
to the minimum of m and M.

• Number of copied columns N is set in two stages. First, N is set to minimum of
NA − J and number of columns of the matrix referenced by uB. Second, if n > 0
then N is set to the minimum of n and N.

The error flag E is set to on if:

• the reference uA or uB is not defined (i.e. input uA or uB is not connected),

• uplo is less than 0 or greater than 3,

• the number of elements of the matrix referenced by uB is less than M ∗ N.

406CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

uplo Part of the matrix to be copied long

0 All
1 All

2 Upper
3 Lower

i Index of the subarray first row long

j Index of the subarray first column long

m Number of matrix rows long

n Number of matrix columns long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

E Error indicator bool

407

MX_DSAREF – Set reference to subarray of A into B

Block Symbol Licence: STANDARD

uA

i

j

HLD

yA

yB

E

MX_DSAREF

Function Description
The function block MX_DSAREF creates a reference yB to the subarray (submatrix) of
matrix referenced by uA. This operation is very fast because no matrix element is copied.

The output reference yA is always set to the corresponding input reference uA, the
output reference yB is created inside each instance of this function block. If HLD = on

then no other operation is performed otherwise the reference to the matrix yB is created
with the following properties:

• Number of rows of the submatrix is set to M− i, where M is number of rows of the
matrix referenced by uA.

• Number of columns of the submatrix is set to N− j, where N is number of columns
of the matrix referenced by uA.

• The first element in position (0, 0) of the submatrix is the element of the matrix
referenced by uA in position (i, j), all indices are zero based.

• The matrix referenced by yB has the same leading dimension as the matrix refer-
enced by uA.

The error flag E is set to on if:

• the reference uA is not defined (i.e. input uA is not connected),

• 0 > i ≥ M.

• 0 > j ≥ N.

Inputs
uA Input reference to matrix A reference

i Index of the subarray first row long

j Index of the subarray first column long

HLD Hold bool

408CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Parameter
ay Output reference of the subarray �[0 0] double

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

E Error indicator bool

409

MX_DSASET – Set A into subarray of B

Block Symbol Licence: STANDARD

uA

uB

uplo

i

j

m

n

HLD

yA

yB

E

MX_DSASET

Function Description
Generally, the function block MX_DSASET copies the matrix referenced by uA into the
subarray (submatrix) of the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing is copied otherwise the matrix referenced by uA

is copied (with respect to the value of the input uplo) to the submatrix of the matrix
referenced by uB to the row with zero based index I and the column with zero based
index J containing M rows and N columns. The mentioned variables have the following
meanings:

• If the input i ≤ 0 then I is set to 0 else if i ≥ MB then I is set to MB− 1 else I is
set to i, where MB is the number of rows of the matrix referenced by uB.

• If the input j ≤ 0 then J is set to 0 else if j ≥ NB then J is set to NB− 1 else J is
set to j, where NB is the number of columns of the matrix referenced by uB.

• Number of copied rows M is set in two stages. First, M is set to minimum of MB− I

and number of rows of the matrix referenced by uA. Second, if m > 0 then M is set
to the minimum of m and M.

• Number of copied columns N is set in two stages. First, N is set to minimum of
NB − J and number of columns of the matrix referenced by uA. Second, if n > 0
then N is set to the minimum of n and N.

The error flag E is set to on if:

• the reference uA or uB is not defined (i.e. input uA or uB is not connected),

• uplo is less than 0 or greater than 3,

• the number of elements of the matrix referenced by uB is less than M ∗ N.

410CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

uplo Part of the matrix to be copied long

0 All
1 All

2 Upper
3 Lower

i Index of the subarray first row long

j Index of the subarray first column long

m Number of matrix rows long

n Number of matrix columns long

HLD Hold bool

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

E Error indicator bool

411

MX_DTRNSP – General matrix transposition: B := alpha*A^T

Block Symbol Licence: STANDARD

uA

uB

alpha

HLD

yA

yB

E

MX_DTRNSP

Function Description
The function block MX_DTRNSP stores the scalar multiple of the general (i.e. rectangular)
matrix referenced by uA into the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing else is done otherwise the BLAS-like function
X_DTRNSP is called internally:

X_DTRNSP(M, N, ALPHA, uA, LDA, uB, LDB);

where parameters of X_DTRNSP are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• If the input alpha is equal to 0 then ALPHA is set to 1 else ALPHA is set to alpha.

• LDA and LDB are leading dimensions of matrices referenced by uA and uB.

The error flag E is set to on if:

• the reference uA or uB is not defined (i.e. input uA or uB is not connected),

• the call of the function X_DTRNSP returns error using the function XERBLA, see the
system log.

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

alpha Scalar coefficient alpha double

HLD Hold bool

412CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

E Error indicator bool

413

MX_DTRNSQ – Square matrix in-place transposition: A := al-
pha*A^T

Block Symbol Licence: STANDARD

uA

alpha

HLD

yA

E

MX_DTRNSQ

Function Description
The function block MX_DTRNSQ transpose the scalar multiple of the square matrix refer-
enced by uA in-place.

The output reference yA is always set to the corresponding input references uA. If
HLD = on then nothing else is done otherwise the BLAS-like function X_DTRNSQ is called
internally:

X_DTRNSQ(N, ALPHA, uA, LDA);

where parameters of X_DTRNSQ are set in the following way:

• N is number of rows and columns of the matrix referenced by uA.

• If the input alpha is equal to 0 then ALPHA is set to 1 else ALPHA is set to alpha.

• LDA is the leading dimension of the matrix referenced by uA.

The error flag E is set to on if:

• the reference uA is not defined (i.e. input uA is not connected),

• the matrix referenced by uA is not square,

• the call of the function X_DTRNSQ returns error using the function XERBLA, see the
system log.

Inputs
uA Input reference to matrix A reference

alpha Scalar coefficient alpha double

HLD Hold bool

414CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Outputs
yA Output reference to matrix A reference

E Error indicator bool

415

MX_FILL – Fill real matrix or vector

Block Symbol Licence: STANDARD

uMV

value

mode

HLD

yMV

E

MX_FILL

Function Description
The function block MX_FILL fills elements of the matrix or vector referenced by uMV

according to the input mode.
The output reference yMV is always set to the corresponding input references uMV. If

HLD = on then nothing else is done.
The error flag E is set to on if:

• the reference uMV is not defined (i.e. input uMV is not connected),

• 0 > mode > 4.

Inputs
uMV Input reference to a matrix or vector reference

value Fill value of matrix/vector double

mode Fill mode long

0,1 . . . Value – All elements are set to value

2 Ones – All elements are set to 1
3 Diagonal value – Diagonal is set to value, the other

elements to 0
4 Diagonal ones – Initializes identity matrix (eye)

HLD Hold bool

Outputs
yMV Output reference to a matrix or vector reference

E Error indicator bool

416CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MX_MAT – Matrix data storage block

Block Symbol Licence: STANDARD

yMat

MX_MAT

Function Description
The function block MX_MAT allocates memory (during the block initialization) for m ∗ n
elements of the type determined by the parameter etype of the matrix referenced by the
output yMat. Also matrix leading dimension can be set by the parameter ld. If ld < m

then the leading dimension is set to m.
Note that the present version of the MATRIX function block set supports only matrices

with the etype equal to 8: Double.

Parameters
m Number of matrix rows ↓1 ↑1000000000 �10 long

n Number of matrix columns ↓1 ↑1000000000 �10 long

ld Leading dimension (>= number of rows) ↓0 ↑1000000000 long

etype Type of elements �8 long

1 Bool
2 Byte
3 Short
4 Long
5 Word

6 DWord
7 Float
8 Double
–-
10 Large

Output
yMat Output reference to a matrix reference

417

MX_RAND – Randomly generated matrix or vector

Block Symbol Licence: STANDARD

uMV

nseed

SET

HLD

yMV

E

MX_RAND

Function Description
The function block MX_RAND generates random elements of the matrix or vector referenced
by uMV.

The output reference yMV is always set to the corresponding input references uMV. If
HLD = on then nothing is generated otherwise pseudo-random values of the matrix or
vector elements referenced by uMV are generated using these rules:

• If the parameter BIP is on then the generated elements are inside the interval
[−scale; scale] else they are inside the interval [0; scale].

• Elements are internally generated using the standard C language function rand()

which generates pseudo-random numbers in the range from 0 to RAND_MAX. Note,
that the value of RAND_MAX can be platform dependent (and it should be at least
32767).

• The rising edge on the input SET causes that the standard C language function
srand(nseed) (initailizes the pseudo-random generator with the value of nseed)
is called before the generation of random elements. The same sequences of pseudo-
random numbers are generated after calls of srand(nseed) for the same values of
nseed.

The error flag E is set to on if the reference uMV is not defined (i.e. input uMV is not
connected).

Inputs
uMV Input reference to a matrix or vector reference

nseed Random number seed long

SET Set initial value of random number generator to nseed on rising edge bool

HLD Hold bool

418CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Parameters
BIP Bipolar random values flag bool

scale Random values multiplication factor �1.0 double

Outputs
yMV Output reference to a matrix or vector reference

E Error indicator bool

419

MX_REFCOPY – Copies input references of matrices A and B to
their output references

Block Symbol Licence: STANDARD

uA

uB

yA

yB

MX_REFCOPY

Function Description
The function block MX_REFCOPY is an administrative block of the MATRIX blockset. It does
nothing else than copying the input references uA and uB to the corresponding output
references yA and yB.

But suitable insertion of this block to the function block scheme can substantially in-
fluence (change) the execution order of blocks which can be very advantageous especially
in combination with such blocks as e.g. MX_DSAREF.

Inputs
uA Input reference to matrix A reference

uB Input reference to matrix B reference

Outputs
yA Output reference to matrix A reference

yB Output reference to matrix B reference

420CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

MX_VEC – Vector data storage block

Block Symbol Licence: STANDARD

yVec

MX_VEC

Function Description
The function block MX_VEC allocates memory (during the block initialization) for n ele-
ments of the type determined by the parameter etype of the vector referenced by the
output yVec.

Note that the present version of the MATRIX function block set supports only vectors
with the etype equal to 8: Double.

Parameters
n Number of vector elements ↓1 ↑1000000000 �10 long

etype Type of elements �8 long

1 Bool
2 Byte
3 Short
4 Long
5 Word

6 DWord
7 Float
8 Double
–-
10 Large

Output
yVec Output reference to a vector reference

421

MX_WRITE – Write a Matrix/Vector to the console/system log

Block Symbol Licence: STANDARD

uMV
RUN

yMV
E

MX_WRITE

Function Description
This function block can write a vector or matrix to the console or the system log. The
severity of the console/system log output is set by the parameter mode in combination
with settings of system log from RexDraw, menu Target/Configure System Log. Writ-
ten data can be viewed in RexDraw, after opening the system log window by the command
Target/Show System Log. The function block is very useful for debugging purposes of
matrix/vector algorithms.

The output references yMV is always set to the input reference uMV. If RUN = off

then nothing else is done otherwise matrix or vector is written to the system log if the
configured target logging level for function blocks contains the configured mode. Format
of each matrix/vector element is determined by parameters mchars and mdec.
The error flag E is set to on if:

• the reference uMV is not defined (i.e. input uMV is not connected),

• 3 > mchars > 25,

• 0 > mdec > mchars− 2.

Inputs
uMV Input reference to a matrix or vector reference

RUN Enable execution bool

Parameters
Symbol Matrix/vector symbolic name for console or log output �A string

mchars Number of characters per single element ↓3 ↑25 �8 long

mdec Number of decimal digits per single element ↓0 ↑23 �4 long

mode Severity mode of writing �3 long

1 None
2 Verbose
3 Information
4 Warning
5 Error

422CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Outputs
yMV Output reference to a matrix or vector reference

E Error indicator bool

423

RTOV – Vector multiplexer

Block Symbol Licence: STANDARD

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV

Function Description
The RTOV block can be used to create vector signals in the REX Control System. It
combines the scalar input signals into one vector output signal.

It is also possible to chain the RTOV blocks to create signals with more than 8 items.
The nmax parameter defines the maximal number of items in the vector (in other

words, the size of memory allocated for the signal). The offset parameter defines the
position of the first input signal u1 in the resulting signal. Only the first N input signals
are combined into the resulting yVec vector signal.

Inputs
uVec Vector signal reference

u1 Analog input of the block double

u2 Analog input of the block double

u3 Analog input of the block double

u4 Analog input of the block double

u5 Analog input of the block double

u6 Analog input of the block double

u7 Analog input of the block double

u8 Analog input of the block double

Parameters
nmax Allocated size of vector ↓0 �8 long

offset Index of the first input in vector ↓0 long

n Number of valid inputs ↓1 ↑8 �8 long

Output
yVec Vector signal reference

424CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

SWVMR – Vector/matrix/reference signal switch

Block Symbol Licence: STANDARD

uRef0
uRef1
uRef2
uRef3
uRef4
uRef5
uRef6
uRef7
iSW

yRef

SWVMR

Function Description
The SWVMR allows switching of vector or matrix signals. It also allow switching of motion
axes in motion control algorithms (see the RM_Axis block).

Use the SSW block or its alternatives SWR and SELU for switching simple signals.

Inputs
uRef0 Vector signal reference

uRef1 Vector signal reference

uRef2 Vector signal reference

uRef3 Vector signal reference

uRef4 Vector signal reference

uRef5 Vector signal reference

uRef6 Vector signal reference

uRef7 Vector signal reference

iSW Active signal selector long

Output
yRef Vector signal reference

425

VTOR – Vector demultiplexer

Block Symbol Licence: STANDARD

uVec

y1
y2
y3
y4
y5
y6
y7
y8

VTOR

Function Description
The VTOR block splits the input vector signal into individual signals. The user defines the
starting item and the number of items to feed to the output signals using the offset

and N parameter respectively.

Input
uVec Vector signal reference

Parameters
n Number of valid outputs ↓1 ↑8 �8 long

offset Index of the first output ↓0 long

Outputs
y1 Analog output of the block double

y2 Analog output of the block double

y3 Analog output of the block double

y4 Analog output of the block double

y5 Analog output of the block double

y6 Analog output of the block double

y7 Analog output of the block double

y8 Analog output of the block double

426CHAPTER 14. MATRIX – BLOCKS FOR MATRIX AND VECTOR OPERATIONS

Chapter 15

SPEC – Special blocks

Contents
EPC – External program call . 428
HTTP – HTTP GET or POST request (obsolete) 431
HTTP2 – Block for generating HTTP GET or POST requests . . 433
SMTP – Send email message via SMTP 435
RDC – Remote data connection . 437
REXLANG – User programmable block 442

427

428 CHAPTER 15. SPEC – SPECIAL BLOCKS

EPC – External program call

Block Symbol Licence: ADVANCED

uVec1

uVec2

uVec3

uVec4

uVec5

uVec6

uVec7

uVec8

EXEC

RESET

DSI

DSO

yVec1
yVec2
yVec3
yVec4
yVec5
yVec6
yVec7
yVec8
DONE
BUSY

ERR
errID

res
icnt

ocnt

EPC

Function Description
The EPC block executes an external program upon a rising edge (off→on) occurring at
the EXEC input. The name and options of the program are defined by the cmd parameter.
The format is the same as if the program was executed from the command line of the
operating system.

It is possible to pass data from the REX Control System to the external program via
files. The formatting of the files is defined by the format parameter. All the currently
supported formats are textual and simple, which allows straightforward processing of the
data in arbitrary program. Use e.g.
values=load(’-ASCII’, ’epc_inputVec1’);

for loading the data in MATLAB or
values=read(’epc_inputVec1’,-1,32);

in SCILAB. The filename and number of columns must be adjusted for the given project.
Data exchange in the opposite direction is naturally also supported, the REX Control
System can read the files in the same format.

The block works in two modes. In basic mode, the rising edge on the EXEC input
triggers reading the data on inputs and storing them in the ifns file. The values of the
i-th input vector uVec<i> are stored in the i-th file from the ifns list. In sampling mode,
the data from the input vectors are stored in each period of the control algorithm. In
both cases the values from one time instant form one line in the file.

Analogically, the data from output files are copied to the outputs of the block (one
line from the i-th file in the ofns list to the i-th output vector yVec<i>).

The inputs working in the sampling mode are defined by the sl list (comma-separated
numbers). The outputs work always in the sampling mode – the last values are kept when

429

the end of file is reached. The copying of data to input files can be blocked by the DSI

input, the same holds for output data and the DSO input.
Use the RTOV block to combine individual signals into a vector one for the uVec input.

The RTOV blocks can be chained, therefore it is possible to create a vector of arbitrary
dimension. Similarly, use the VTOR block to demultiplex a vector signal to individual
signals.

Inputs
uVec1..uVec8 Input vector signal reference

EXEC External program is called on rising edge bool

RESET Block reset (deletes the input and output files and terminates the
external program)

bool

DSI Disable inputs sampling bool

DSO Disable outputs sampling bool

Outputs
yVec1..yVec8 Output vector signal reference

DONE External program finished bool

BUSY External program running bool

ERR Error flag bool

errID Error code error

i REX general error
res External program return code long

icnt Current input sample long

ocnt Current output sample long

Parameters
cmd Operating system command to execute string

ifns Input filenames (separated by semicolon) �epc_uVec1;epc_uVec2 string

ofns Output filenames (separated by semicolon)
�epc_yVec1;epc_yVec2

string

sl List of inputs working in the sampling mode. The format of the list
is e.g. 1,3..5,8. Third-party programs (Simulink, OPC clients etc.)
work with an integer number, which is a binary mask, i.e. 157 (binary
10011101) in the mentioned case. ↓0 ↑255 �85

long

ifm Maximum number of input samples �10000 long

format Format of input and output files �1 long

1 Space-delimited values
2 CSV (decimal point and commas)
3 CSV (decimal comma and semicolons)

nmax Maximum output vectors length �10000 long

Notes

430 CHAPTER 15. SPEC – SPECIAL BLOCKS

• The called external program has the same priority as the calling task. This priority
is high, in some cases higher than operating-system-kernel tasks. On Linux based
systems, it is possible to lower the priority by using the chrt command:
chrt -o 0 extprg.sh,
where extprg.sh is the original external program.

• The size of signals is limited by parameter nmax. Bigger parameter means bigger
memory consuption, so choose this parameter as small as possible.

• The filenames must respect the naming conventions of the target platform operating
system. It is recommended to use only alphanumeric characters and an underscore
to avoid problems. Also respect the capitalization, e.g. Linux is case-sensitive.

• The block also creates copies of the ifns and ofns files for implementation reasons.
The names of these files are extended by the underscore character.

• The ifns and ofns paths are relative to the folder where the archives of the REX
Control System are stored. It is recommended to define a symbolic link to a RAM-
drive inside this folder for improved performance. On the other hand, for long series
of data it is better to store the data on a permanent storage medium because the
data can be appended e.g. after a power-failure recovery.

• The OSCALL block can be used for execution of some operating system functions.

431

HTTP – HTTP GET or POST request (obsolete)

Block Symbol Licence: ADVANCED

postdata

urldata

TRG

data

BUSY

DONE

ERR

iE

ihttp

HTTP

Function Description
The HTTP block performs a single HTTP GET or POST request. Target address (URL)
is defined by url parameter and urldata input. A final URL is formed in the way so
that urldata input is simply added to url parameter.

HTTP request is started by the TRG parameter. Then the BUSY output is set until a
request is finished, which is signaled by the DONE output. In case of an error, the ERROR

output is set. The errId output carries last error identified by REX Control System error
code. The hterror carries a HTTP status code. All data sent back by server to client is
stored in the data output.

The block may be run in blocking or non-blocking mode which is specified by the
BLOCKING parameter. In blocking mode, execution of a task is suspended until a request
is finished. In non-blocking mode, the block performs only single operation depending
on available data and execution of a task is not blocked. It is advised to always run HTTP

block in non-blocking mode. It is however necessary to mention that on various operating
systems some operations can not be performed in the non-blocking mode, so be careful
and do not use this block in quick tasks or in tasks with short execution period. The
non-blocking operation is best supported on GNU/Linux operating system. The maximal
duration of a request performed by the HTTP block is specified by the timeout parameter.

The block supports user authentication using basic HTTP authentication method.
User name and password may be specified by user and password parameters. The block
also supports secure HTTP (HTTPS). It is also possible to let the block verify server’s
certificate by setting the VERIFY parameter. SSL certificate of a server or server’s trusted
certificate authority must be stored in the certificate parameter in a PEM format.
The block does not support any certificate storage.

Parameters postmime and acceptmime specify MIME encoding of data being sent to
server or expected encoding of a HTTP response.

Parameters nmax, postmax, and datamax specify maximum sizes of buffers allocated
by the block. The nmax parameter is maximal size of any string parameter. The postmax

parameter specifies a maximal size of postdata. The datamax parameter specifies a

432 CHAPTER 15. SPEC – SPECIAL BLOCKS

maximal size of data.

Inputs
postdata Data to put in HTTP POST request string

urldata Data to append to URL address string

TRG Trigger of the selected action bool

Parameters
url URL address to send the HTTP request to string

method HTTP request type �1 long

1 GET
2 POST

user User name string

password Password string

certificate Authentication certificate string

VERIFY Enable server verification (valid certificate) bool

postmime MIME encoding for POST request �application/json string

acceptmime MIME encoding of HTTP response �application/json string

timeout Timeout interval �5.0 double

BLOCKING Wait for the operation to finish bool

nmax Allocated size of string ↓0 ↑65520 long

postmax Allocated memory for POST request data ↓128 ↑65520 �256 long

datamax Allocated memory for HTTP response ↓128 ↑10000000 �1024 long

Outputs
data Response data string

BUSY Sending HTTP request bool

DONE HTTP request processed bool

ERROR Error indicator bool

errId Error code error

hterror HTTP response long

433

HTTP2 – Block for generating HTTP GET or POST requests

Block Symbol Licence: ADVANCED

postdata

urldata

header

TRG

data

BUSY

DONE

ERR

iE

ihttp

HTTP2

Function Description
The HTTP block performs a single HTTP GET or POST request. Target address (URL)
is defined by url parameter and urldata input. A final URL is formed in the way so
that urldata input is simply added to url parameter. The header input can be used
for declaration of additional header fields.

HTTP request is started by the TRG parameter. Then the BUSY output is set until a
request is finished, which is signaled by the DONE output. In case of an error, the ERROR

output is set. The errId output carries last error identified by REX Control System error
code. The hterror carries a HTTP status code. All data sent back by server to client is
stored in the data output.

The block may be run in blocking or non-blocking mode which is specified by the
BLOCKING parameter. In blocking mode, execution of a task is suspended until a request
is finished. In non-blocking mode, the block performs only single operation depending
on available data and execution of a task is not blocked. It is advised to always run HTTP

block in non-blocking mode. It is however necessary to mention that on various operating
systems some operations can not be performed in the non-blocking mode, so be careful
and do not use this block in quick tasks or in tasks with short execution period. The
non-blocking operation is best supported on GNU/Linux operating system. The maximal
duration of a request performed by the HTTP block is specified by the timeout parameter.

The block supports user authentication using basic HTTP authentication method.
User name and password may be specified by user and password parameters. The block
also supports secure HTTP (HTTPS). It is also possible to let the block verify server’s
certificate by setting the VERIFY parameter. SSL certificate of a server or server’s trusted
certificate authority must be stored in the certificate parameter in a PEM format.
The block does not support any certificate storage.

Parameters postmime and acceptmime specify MIME encoding of data being sent to
server or expected encoding of a HTTP response.

Parameters nmax, postmax, and datamax specify maximum sizes of buffers allocated
by the block. The nmax parameter is maximal size of any string parameter. The postmax

434 CHAPTER 15. SPEC – SPECIAL BLOCKS

parameter specifies a maximal size of postdata. The datamax parameter specifies a
maximal size of data.

Inputs
postdata Data to put in HTTP POST request string

urldata Data to append to URL address string

header Additional header fields string

TRG Trigger of the selected action bool

Parameters
url URL address to send the HTTP request to string

method HTTP request type �1 long

1 GET
2 POST

user User name string

password Password string

certificate Authentication certificate string

VERIFY Enable server verification (valid certificate) bool

postmime MIME encoding for POST request �application/json string

acceptmime MIME encoding for GET request �application/json string

timeout Timeout interval �5.0 double

BLOCKING Wait for the operation to finish bool

nmax Allocated size of string ↓0 ↑65520 long

postmax Allocated memory for POST request data ↓128 ↑65520 �256 long

datamax Allocated memory for HTTP response ↓128 ↑10000000 �1024 long

Outputs
data Response data string

BUSY Sending HTTP request bool

DONE HTTP request processed bool

ERROR Error indicator bool

errId Error code error

hterror HTTP response long

435

SMTP – Send email message via SMTP

Block Symbol Licence: ADVANCED

subj

body

TRG

BUSY

DONE

ERR

iE

SMTP

Function Description
The SMTP block sends a single email message via standard SMTP protocol. The block
acts as a simple email client. It does not implement a mail server.

Contents of a message is defined by the inputs subj and body. Parameters from and
to specify sender and receiver of a message. A message is sent when the TRG parameter
is set. Then the BUSY output is set until the request is finished, which is signaled by the
DONE output. In case of an error, the ERROR output is set. The errId output carries last
error identified by REX Control System error code. The domain parameter must always
be set to identify the target device. A default value should work in most cases.

The block may be run in blocking or non-blocking mode which is specified by the
BLOCKING parameter. In a blocking mode, the execution of a task is suspended until a
request is finished. In a non-blocking mode, the block performs only a single operation
depending on available data and the execution of a task is not blocked. It is advised to
always run the SMTP block in a non-blocking mode. It is however necessary to mention
that on various operating systems some operations may not be performed in a non-
blocking mode, so be careful and do not use this block in quick tasks or in tasks with
short execution period. The non-blocking operation is best supported on GNU/Linux
operating system. A maximal duration of a request performed by the SMTP block is
specified by the timeout parameter.

The block supports user authentication using standard SMTP authentication method.
User name and password may be specified by the user and password parameters. The
block also supports secure connection. An encryption method is selected by the tls pa-
rameter. It is also possible to let the block verify server’s certificate by setting the VERIFY
parameter. SSL certificate of a server or server’s trusted certificate authority must be
stored in the certificate parameter in a PEM format. The block does not support any
certificate storage.

Parameters nmax and datamax specify maximum sizes of buffers allocated by the
block. The nmax parameter is maximal size of any string parameter. The datamax pa-
rameter specifies a maximal size of a data.

436 CHAPTER 15. SPEC – SPECIAL BLOCKS

Inputs
subj Subject of the e-mail message string

body Body of the e-mail message string

TRG Trigger of the selected action bool

Parameters
server SMTP server address string

to E-mail of the recipient string

from E-mail of the sender string

tls Encryption method �1 long

1 None
2 StartTLS
3 TLS

user User name string

password Password string

domain Domain name or identification of the target device string

auth Authentication method �1 long

1 Login
2 Plain

certificate Authentication certificate string

VERIFY Enable server verification (valid certificate) bool

timeout Timeout interval double

BLOCKING Wait for the operation to finish bool

nmax Allocated size of string ↓0 ↑65520 �512 long

datamax Allocated memory for HTTP response ↓128 ↑65520 long

Outputs
BUSY Sending e-mail bool

DONE E-mail has been sent bool

ERROR Error indicator bool

errId Error code error

437

RDC – Remote data connection

Block Symbol Licence: ADVANCED

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC

Function Description

The RDC block is a special input-output block. The values are transferred between two
blocks on different computers, eventually two different Simulinks on the same computer or
Simulink and the REX control system on the same computer. In order to communicate,
the two RDC blocks must have the same id number. The communication is based on
UDP/IP protocol. This protocol is used as commonly as the more known TCP/IP, i.e.
it works over all LAN networks and the Internet. The algorithm performs the following
operations in each step:

• If HLD = on, the block execution is terminated.

• If the period parameter is a positive number, the difference between the system
timer and the time of the last packet sending is evaluated. The block execution
is stopped if the difference does not exceed the period parameter. If the period

parameter is zero or negative, the time difference is not checked.

• A data packet is created. The packet includes block number, the so-called invoke

number (serial number of the packet) and the values u0 to u15. All values are stored
in the commonly used so-called network byte order, therefore the application is
computer and/or processor independent.

• The packet is sent to the specified IP address and port.

• The invoke number is increased by 1.

438 CHAPTER 15. SPEC – SPECIAL BLOCKS

• It is checked whether any incoming packets have been received.

• If so, the packet validity is checked (size, id number, invoke number).

• If the data is valid, all outputs y0 to y15 are set to the values contained in the
packet received.

• The fresh output is updated. In case of error, the error code is displayed by the
err output.

There are 16 values transmitted in each direction periodically between two blocks
with the same id number. The u(i) input of the first block is transmitted the y(i)

output of the other block. Unlike the TCP/IP protocol, the UDP/IP protocol does not
have any mechanism for dealing with lost or duplicate packets, so it must be handled by
the algorithm itself. The invoke number is used for this purpose. This state variable is
increased by 1 each time a packet is sent. The block stores also the invoke number of
the last received packet. It is possible to distinguish between various events by compar-
ing these two invoke numbers. The packets with invoke numbers lower than the invoke
number of the last received packet are denied unless the difference is grater than 10. This
solves the situation when one of the RDC blocks is restarted and its invoke number is
reset.

All RDC blocks in the same application must have the same local port number and
the number of RDC blocks is limited to 64 for implementation reasons. If there are two
applications using the RDC block running on the same machine, then each of them must
use a different local port number.

Inputs
HLD Input for disabling the execution of the block. No packets are received

nor transmitted when HLD = on.
bool

u0..u15 Values which are sent/written to the output values y0 to y15 of the
paired block

double

Outputs
iE Displays the code of the last error. The error codes are listed below: long

0 No error

439

Persistent errors originating in the initialization phase (< 0). Cannot
be fixed automatically.

-1 Maximum number of blocks exceeded (> 64)
-2 Local ports mismatch; the lport parameter must be the

same for all RDC blocks within one application
-3 Error opening socket (the UDP/IP protocol is not

available)
-4 Error assigning local port (port already occupied by

another service or application)
-5 Error setting the so-called non-blocking socket mode (the

RDC block requires this mode)
-10 . . . Error initializing the socket library
-11 . . . Error initializing the socket library
-12 . . . Error initializing the socket library

Temporary errors originating in any cycle of the code (> 0). Can be
fixed automatically.

1 Initialization successful, yet no data packet has been
received

2 Packet consistency error (incorrect length – transmission
error or conflicting service/application is running)

4 Error receiving packet (socket library error)
8 Error sending packet (socket library error)

fresh Elapsed time (in seconds) since the last received packet. Can be used
for detection of an error in the paired block.

double

y0..y15 Values transmitted from the input ports u0 to u15 of the paired RDC

block – data from the last packet received
double

Parameters
target Name or IP address running the paired RDC block. Broadcast address

is allowed.
string

rport Remote port – address of the UDP/IP protocol service, it
is recommended to keep the default value unless necessary
(service/application conflict) �1288

word

lport Local port – similar meaning as the rport parameter; remote port
applies to the receiving machine, local port applies to the machine
sending the packet �1288

word

id Block ID – this number is contained within the data packet in order
to reach the proper target block (all blocks on the target receive the
packet but only the one with the corresponding id decomposes it and
uses the data contained to update its outputs) ↓1 ↑32767 �1

long

period The shortest time interval between transmitting/receiving packets (in
seconds). The packets are transmitted/received during each execution
of the block for period≤0 while the positive values of this parameter
are extremely useful when sending data out of the Simulink continuous
models based on a Variable step solver.

double

440 CHAPTER 15. SPEC – SPECIAL BLOCKS

Example

The following example explains the function of the RDC block. The constants 3 and
5 are sent from Computer1 to Computer2, where they appear at the y0 and y1 outputs
of the RDC2 block. The constants are then summed and multiplied and sent back to
Computer1 via the u11 and u12 outputs of the RDC2 block. The displays connected to the
y11 and y12 outputs of the RDC1 block show the results of mathematical operations 3+5
and (3 + 5) ∗ 5. The signal from the SG generator running on Computer2 is transmitted
to the y0 output of the RDC1 block, where it can be easily displayed. Note that Display
and Scope are Matlab/Simulink blocks – to view the data in the REX control system,
the RexView diagnostic program and the TRND block must be used.

target computer name = "Computer2"

Block ID = 1

Computer1 Computer 2

target computer name = "Computer1"

Block ID = 1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Scope2

SLEEP SLEEP

y

SG

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC2

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC1

u1
u2 y

MUL

0

Display1

0

Display

5

CNI1

3

CNI
u1
u2 y

ADD

The simplicity of the example is intentional. The goal is to demonstrate the func-
tionality of the block, not the complexity of the system. In reality, the RDC block is used
in more complex tasks, e.g. for remote tuning of the PID controller as shown below. The
PID control algorithm is running on Computer1 while the tuning algorithm is executed
by Computer2. See the PIDU, PIDMA and SSW blocks for more details.

target computer name = "Computer2"

Block ID = 1

Computer1 Computer 2

target computer name = "Computer1"

Block ID = 1

Scope1

Scope

u1
u2
SW

y

SSW

SLEEP1

SLEEP

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC2

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC1

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv

de
SAT

TBSY
TE
ite

trem
pk
pti

ptd
pnd
pb
pc

PIDMA

u y

MDL

tv
UP
DN
rv
LOC

y

MCU

[proces_pv]

[proces_mv]

[proces_mv]

[proces_pv]

0

Display

1

CNB

OPC server of the RDC block

441

There is also an OPC server embedded in the RDC block. Detailed description will be
available soon.

442 CHAPTER 15. SPEC – SPECIAL BLOCKS

REXLANG – User programmable block

Block Symbol Licence: REXLANG

HLD
RESET
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

REXLANG

Function Description
The standard function blocks of the REX control system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-defined function. The REXLANG block covers this case.
It implements an user-defined algorithm written in a scripting language very similar to
the C language (or Java).

Scripting language
As mentioned, the scripting language is similar to the C language. Nevertheless, there
are some differences and limitations:

• Only the double and long data types are supported (it is possible to use int,
short, bool as well, but these are internally converted to long. The float type
can be used but it is converted internally to double. The typedef type is not
defined.

• Pointers and structures are not implemented. However, it is possible to define arrays
and use the indexes (the [] operator).

• The ’,’ operator is not implemented.

• The preprocessor supports the following commands: #include, #define, #ifdef ..
[#else ..] #endif, #ifndef .. [#else ..] #endif (i.e. #pragma and #if .. [#else ..]
#endif are not supported).

443

• The standard ANSI C libraries are not implemented, however the majority of
mathematic functions from math.h and some other functions are implemented (see
the text below).

• The input, output and parameter keywords are defined for referencing the REXLANG
block inputs, outputs and parameters. System functions for controlling the execu-
tion and diagnostics are implemented (see the text below).

• The main() function is executed periodically during runtime. Alongside the main()
function the init() (executed once at startup), exit() (executed once when the
control algorithm is stopped) and the parchange() (executed on parameters change
in the REX system, executed in each step in Simulink).

• The functions and procedures without parameters must be explicitly declared void.

• The identifiers cannot be overloaded, i.e. the keywords and built-in functions cannot
share the name with an identifier. The local and global variables cannot share the
same name.

• Array initializers are not supported. Neither in local arrays nor the global ones.

Scripting language syntax
The scripting language syntax is based on the C language, but pointers are not supported
and the data types are limited to long and double. Moreover the input, output and
parameter keywords are defined for referencing the REXLANG block inputs, outputs and
parameters. The syntax is as follows:

• <type> input(<input number>) <variable name>;

• <type> output(<outpt number>) <variable name>;

• <type> parameter(<parameter number>) <variable name>;

The input and parameter variables are read-only while the output variables are write-
only. For example:

double input(1) input_signal; /* declaration of a variable of type

double, which corresponds with the

u1 input of the block */

long output(2) output_signal; /* declaration of a variable of type

long, which corresponds with the y2

output of the block */

input_signal = 3; //not allowed, inputs are read-only

sum = output_signal + 1; //not allowed, outputs are write-only

if (input_signal>1) output_signal = 3 + input_signal; //correct

444 CHAPTER 15. SPEC – SPECIAL BLOCKS

Available functions
The following functions are available in the scripting language:

• Mathematic functions (see ANSI C, math.h):
atan, sin, cos, exp, log, sqrt, tan, asin, acos, fabs, fmod, sinh, cosh, tanh,
pow, atan2, ceil, floor and abs Please note that the abs function works with
integer numbers. All the other functions work with variables of type double.

• Vector functions (not part of ANSI C)

double max([n,]val1,...,valn)

Returns the maximum value. The first parameter defining the number of
items is optional.

double max(n,vec)

Returns the value of maximal item in the vec vector.
double min([n,]val1,...,valn)

Returns the minimum value. The first parameter defining the number of
items is optional.

double min(n,vec)

Returns the value of minimal item in the vec vector.
double poly([n,]x,an,...,a1,a0)

Evaluates the polynomial y = an∗xn+. . .+a1∗x+a0. The first parameter
defining the number of items is optional.

double poly(n,x,vec)

Evaluates the polynomial y = vec[n] ∗ xn + . . .+ vec[1] ∗ x+ vec[0].
double scal(n,vec1,vec2)

Evaluates the scalar product y = vec1[0] ∗ vec2[0]+ . . .+ vec1[n-1] ∗
vec2[n-1].

double scal(n,vec1,vec2,skip1,skip2)

Evaluates the scalar product y = vec1[0] ∗ vec2[0] + vec1[skip1] ∗
vec2[skip2] + . . . + vec1[(n-1)*skip1] ∗ vec2[(n-1)*skip2]. This is
well suited for multiplication of matrices, which are stored as vectors (line
by line or column by column).

double conv(n,vec1,vec2)

Evaluates the convolutory product y = vec1[0] ∗ vec2[n-1]+ vec1[1] ∗
vec2[n-1]+ . . .+ vec1[n-1] ∗ vec2[0].

double sum(n,vec)

Sums the items in a vector, i.e. y = vec[0]+ vec[1]+ . . .+ vec[n-1].
double sum([n,]val1,...,valn)

Sums the items, i.e. y = val1 + val2 + . . . + valn. The first parameter
defining the number of items is optional.

[]array([n,]an-1,...,a1,a0)

Returns an array/vector with the given values. The first parameter defin-
ing the number of items is optional. The type of the returned value is
chosen automatically to fit the type of parameters (all must be of the
same type).

445

[]subarray(idx,vec)

Returns a subarray/subvector of the vec array, starting at the idx index.
The type of the returned value is chosen automatically according to the
vec array.

copyarray(count,vecSource,idxSource,vecTarget,idxTarget)

Copies count items of the vecSource array, starting at idxSource index,
to the vecTarget array, starting at idxTarget index. Both arrays must
be of the same type.

void fillarray(vector, value, count)

Copies value to count items of the vector array (always starting from
index 0).

• String functions (ANSI C contains analogous functions in the string.h file)

string strsub(str,idx,len)

Returns a substring of length len starting at index idx.
long strlen(str)

Returns string length (number of characters).
long strfind(str,substr)

Returns the position of first occurrence of substr in str.
long strrfind(str,substr)

Returns the position of last occurrence of substr in str.
strreplace(str,pattern,substr)

Find all occurrences of pattern in str and replace it with substr (in-place
replacement, so new string is stored into str).

string strupr(str)

Converts a string to uppercase.
long str2long(str)

Converts string to integer number. The first non-numerical character is
considered the end of the input string and the remaining characters are
ignored.

double str2double(str)

Converts string to a decimal number. The first non-numerical character is
considered the end of the input string and the remaining characters are
ignored.

string long2str(num)

Converts an integer number num to text.
string double2str(num)

Converts a decimal number num to text.
strcpy(dest,src)

Function copies the src string to the dest string. Implemented for com-
patibility with ANSI C. The construction dest=src yields the same result.

strcat(dest,src)

Function appends a copy of the src string to the dest string. Implemented
for compatibility with ANSI C. The construction dest=dest+src yields
the same result.

446 CHAPTER 15. SPEC – SPECIAL BLOCKS

strcmp(str1,str2)

Function compares strings str1 and str2. Implemented for compatibility
with ANSI C. The construction str1==str2 yields the same result.

long RegExp(str,regexp,capture[])

Compares the str string with regular expression regexp. When the string
matches the pattern, the capture array contains individual sections of the
regular expression. capture[0] is always the complete regular expression.
The function return the number of captured strings or a negative value in
case of an error. The regular expression may contain the following:
(?i) . . . Must be at the beginning of the regular expression. Makes the

matching case-insensitive.
ˆ . . . Match beginning of a string
$. . . Match end of a string
() . . . Grouping and substring capturing
\s . . . Match whitespace
\S . . . Match non-whitespace
\d . . . Match decimal digit
\n . . . Match new line character
\r . . . Match line feed character
\f . . . Match vertical tab character
\v . . . Match horizontal tab character
\t . . . Match horizontal tab character
\b . . . Match backspace character
+ . . . Match one or more times (greedy)
+? . . . Match one or more times (non-greedy)
* . . . Match zero or more times (greedy)
*? . . . Match zero or more times (non-greedy)
? . . . Match zero or once (non-greedy)
x|y . . . Match x or y (alternation operator)
\meta . . . Match one of the meta characters: ˆ$().[]*+?|\
\xHH . . . Match byte with hex value 0xHH, e.g. \x4a.
[...] . . . Match any character from the set. Ranges like [a-z] are sup-

ported.
[ˆ...] . . . Match any character but the ones from the set.

long ParseJson(json,cnt,names[],values[])

The json string is supposed to contain text in JSON format. The names ar-
ray contain the requested objects (subitems are accessed via ., index of the
array via []). The values array then contains values of the requested ob-
jects. The cnt parameter defines the number of requested objects (length
of both the names and values arrays). The function returns the number
of values, negative numbers indicate errors.

447

Note: String variable is declared just like in ANSI C, i.e. char <variable

name>[<maximum number of characters>];. For passing the strings to
functions use char <variable name>[] or string <variable name>.

• System functions (not part of ANSI C)

Trace(id,val)

Displays the id value and the val value. The function is intended for
debugging. The id is a user-defined constant (from 0 to 9999) for easy
identification of the displayed message. The val can be of any data type
including text string. The output can be found in the system log of the
REX Control System. In Simulink the output is displayed directly in the
command window of Matlab.
In order to view these debugging messages in the RexView program it is
necessary to enable them. Go to the menu
Target→Diagnostic messages and tick the Information checkbox in
the Function block messages box. Logging have to be also enabled for
the particular block by checking item "Logging" in the "Runtime" section
in the block parameters dialog. By default, this is enabled after placing
a new block from library. Only then are the messages displayed in the
System log tab.

TraceError(id,val) TraceWarning(id,val) TraceVerbose(id,val)

On the contrary to the Trace command, the output is routed to the corre-
sponding logging group. To view the messages, enable the corresponding
group. See the Trace command for details. Messages with the "Error" level
are written to the log allways, regardless the "Logging" item is checked
for the block.

Suspend(sec)

The script is suspended if its execution within the given sampling period
takes more seconds than specified by the sec parameter. At the next start
of the block the script continues from the point where it was suspended.
Use Suspend(0) to suspend the code immediately.

double GetPeriod()

Returns the sampling period of the block in seconds.
double CurrentTime()

Returns the current time (in internal format). Intended for use with the
ElapsedTime() function.

double ElapsedTime(new_time, old_time)

Returns the elapsed time in seconds (decimal number), i.e. the difference
between the two time values new_time and old_time. The CurrentTime()
function is typically used in place of the new_time parameter.

double Random()

Returns a pseudo-random number from the 〈0, 1) interval. The pseudo-
random number generator is initialized prior to calling the init() function
so the sequence is always the same.

448 CHAPTER 15. SPEC – SPECIAL BLOCKS

long QGet(var)

Returns the quality of the var variable (see the QFC, QFD, VIN, VOUT blocks).
The function is intended for use with the inputs, outputs and parameters.
It always returns 0 for internal variables.

void QSet(var, value)

Sets the quality of the var variable (see the QFC, QFD, VIN, VOUT blocks).
The function is intended for use with the inputs, outputs and parameters.
It has no meaning for internal variables.

long QPropag([n,]val1,...,valn)

Returns the quality resulting from merging of qualities of val1,...,valn.
The basic rule for merging is that the resulting quality correspond with
the worst quality of val1,...,valn. To obtain the same behavior as in
other blocks of the REX system, use this function to set the quality of
output, use all the signals influencing the output as parameters.

double LoadValue(fileid, idx)

Reads a value from a file. A binary file with double values or a text file
with values on individual lines is supposed. The idx index (binary file)
or line number (text file) starts at 0. The file is identified by fileid. At
present the following values are supported:

0 . . . file on a disk identified by the p0 parameter
1 . . . file on disk identified by name of the REXLANG block and extension

.dat

2 . . . file on a disk identified by the srcname parameter, but the extension
is changed to .dat

3 . . . rexlang.dat file in the current directory
4-7 . . . same like 0-3, but format is text file. Each line contains one num-

ber. The index idx is the line number and starts at zero. Value idx=-1
means next line (e.g. sequential writing).

void SaveValue(fileid, idx, value)

Stores the value to a file. The meaning of parameters is the same as in
the LoadValue function.

void GetSystemTime(time)

Returns the system time. The time is usually returned as UTC but this can
be altered by the operating system settings. The time parameter must be
an array of at least 8 items of type long. The function fills the array with
the following values in the given order: year, month, day (in the month),
day of week, hours, minutes, seconds, milliseconds. On some platforms the
milliseconds value has a limited precision or is not available at all (the
function returns 0 ms).

void Sleep(seconds)

Stop execution of the block’s algorithm (and whole task) for defined time.
Shortest possible time is about 0.01s, but depend on platform.

449

long GetExtInt(ItemID)

Returns the value of input/output/parameter of arbitrary block in REX
algorithm. The data item is defined by the ItemID parameter. The struc-
ture of the string parameter ItemID is the same as in e.g. the sc parameter
of the GETPI function block. If the value cannot be obtained (e.g. invalid
or non-existing ItemID, data type conflict, etc.), the REXLANG block issues
an error.

long GetExtLong(ItemID)

See GetExtLong(ItemID).
double GetExtReal(ItemID)

Similar to GetExtInt(ItemID) but for decimal numbers.
double GetExtDouble(ItemID)

See GetExtReal(ItemID).
double GetExtString(ItemID)

Similar to GetExtInt(ItemID) but for strings.
void SetExt(ItemID, value)

Sets the input/output/parameter of arbitrary block in REX algorithm to
value. The data item is defined by the ItemID parameter. The structure
of the string parameter ItemID is the same as in e.g. the sc parameter
of the SETPI function block. The type of the item (long/double/string) is
defined by the type of the value parameter.

long memrd32(hMem, offset)

Reading physical memory. Get the handle by Open(72,"/dev/mem",<physical

address>,<area size>).
long memwr32(hMem, offset, value)

Writing to physical memory. Get the handle by OpenMemory("/dev/mem",<physical

address>,<area size>).

• Communication functions (not part of ANSI C)

This set of functions is intended for communication over TCP/IP, UDP/IP or serial
line (RS-232 or RS-485). Only a brief list of available functions is given below, see
the example projects of the REX Control System for more details.

long Open(long type, long lclIP, long lclPort, long rmtIP, long rmtPort)

Opens a socket or COM port according to the type parameter. Connect
is performed for TCP client. Identification number (the so-called handle)
of socket or COM port is returned. If a negative value is returned, the
opening/connection was not successful.

long Open(long type, string comname, long baudrate, long parity)

Modification of the Open() function for opening a serial line.
long Open(long type, string filename)

Modification of the Open() function for opening a file.
long Open(long type, string localname, long locPort, string remotename, long remPort)

Modification of the Open() function for opening a TCP or UDP socket.

450 CHAPTER 15. SPEC – SPECIAL BLOCKS

long OpenFile(string filename)

Modification of the Open() function for opening a file.
long OpenCom(string comname, long baudrate, long parity)

Modification of the Open() function for opening a serial line.
long OpenUDP(string localname, long lolPort, string remotename, long remPort)

Modification of the Open() function for opening a UDP socket.
long OpenTCPsvr(string localname, long lolPort)

Modification of the Open() function for opening a TCP socket - server,
listening.

long OpenTCPcli(string remotename, long remPort)

Modification of the Open() function for opening a TCP socket - client.
long OpenI2C(string devicename)

Modification of the Open() function for opening an I2C bus.
long OpenMemory(string devicename,long baseaddr, long size)

Modification of the Open() function for mapping physical memory.
long OpenSPI(string devicename)

Modification of the Open() function for opening a SPI bus.
long Close(long handle)

Closes the socket, serial line, file or any device opened by the Open function
or its modifications.

void GetOptions(long handle, long params[])

Reads parameters to the params array. The array size must be big enough,
at least 2 for files, 2 for a socket and 22 for serial line (see SetOptions).

void SetOptions(long handle, long params[])

Sets the parameters of a socket or serial line. The array size must be at
least:

– 22 for serial line,
– 2 for file (1st item is mode: 1=seek begin, 2=seek current, 3=seek end,

4=set file end, 2nd item is offset for seek),
– 3 for SPI (1st item is SPI mode, 2nd item is bits per word, 3rd item

is max speed in Hz),
– 5 for I2C (1st item is slave address, 2nd item is 10-bit address flag,

3rd item is Packet Error Checking flag, 4th item is nuber of retries,
5th item is timeout)

long Accept(long hListen)

Accepts the connection to listening socket hListen invoked by the client.
A communication socket handle or an error is returned.

long Read(long handle, long buffer[], long count)

Receives data from a serial line or socket. The count parameter defines
the maximum number of bytes to read. The count of bytes read or an error
code is returned. Each byte of incoming data is put to the buffer array
of type long in the corresponding order.

451

It is also possible to use the form
long Read(long handle, string data[], long count) (i.e. a string is
used instead of a data array; one byte in the input file corresponds to one
character; not applicable to binary files).
The error codes are:
-1 it is necessary to wait for the operation to finish (the function

is "non-blocking")
-309 reading failed; the operating system error code appears in

the log (when function block logging is enabled)
-307 file/socket is not open

long Write(long handle, long buffer[], long count)

Sends the data to a serial line or socket. The count parameter defines
the number of bytes to send. The count of bytes or en error code sent is
returned. Each byte of outgoing data is read from the buffer array of type
long in the corresponding order.
It is also possible to use the form
long Write(long handle, string data) (i.e. a string is used instead of
a data array; one byte in the output file corresponds to one character; not
applicable to binary files).
The error codes are:
-1 it is necessary to wait for the operation to finish (the function

is "non-blocking")
-310 write failed; the operating system error code appears in the

log (when function block logging is enabled)
-307 file/socket is not open

long WriteRead(long handle, long addr, long bufW[], long cntW, long bufR[], long cntR)

Communication over the I2C or SPI bus. Works only in Linux operating
system on devices with the I2C or SPI bus (e.g. Raspberry Pi or ALIX).
Sends and receives data to/from the slave device with address addr. The
parameter handle is returned by the OpenI2C or OpenSPI functions, whose
parameter defines the device name (according to the operating system).
The function returns 0 or an error code.

long ReadLine(long handle, string data)

Read one line from (text) file, serial line or socket; read characters are in
the variable data up to allocated size of the string; the function return
real size (number of bytes) of line or error code.

long Recv(long handle, long buffer[], long count)

Obsolete function. Use Read instead.
long Send(long handle, long buffer[], long count)

Obsolete function. Use Write instead.
long DeleteFile(string filename)

Delete file. Return 0 if success; negative value is error code.
long RenameFile(string filename, string newfilename)

Rename file. Return 0 if success; negative value is error code.

452 CHAPTER 15. SPEC – SPECIAL BLOCKS

Remarks

• The data type of inputs u0..u15, outputs y0..y15 and parameters p0..p15 is
determined during compilation of the source code according to the input, output
and parameter definitions.

• All error codes < 0 require restarting of the REX control system executive. Of
course it is necessary to remove the cause of the error first.

• WARNING! – The inputs and outputs of the block cannot be accessed within the
init() function (the values of inputs are 0, outputs are not set).

• It is possible to include path in the srcname parameter. Otherwise the file is ex-
pected directly in the project directory or in the directories specified by the -I

command line option of the RexComp compiler.

• All parameters of the vector functions are of type double (or array of type double).
The only exception is the n parameter of type long. Note that the functions with
one vector parameter exist in three variants:

double function(val1,...,valn)

Vector is defined as a sequence of values of type double.
double function(n,val1,...,valn)

Vector is defined as in the first case, only the first parameter defines the
number of values – the size of the vector. This variant is compatible with
the C compiler. The n parameter must be a number, not the so-called
const variable and it must correspond with the number of the following
elements defining the vector.

double function(n,vec)

The n parameter is an arbitrary expression of type long and defines the
number of elements the function takes into account.

• The optional parameter n of the vector functions must be specified if the com-
patibility with C/C++ compiler is required. In such a case all the nonstandard
functions must be implemented as well and the functions with variable number of
parameters need to know the parameter count.

• In all case it is important to keep in mind that the vectors start at index 0
and that the array limits are not checked (just like in the C language). E.g. if
double vec[10], x; is defined, the elements have indexes 0 to 9. The expression
x=vec[10]; is neither a syntax nor runtime error, the value is not defined. More
importantly, it is possible to write vec[11]=x;, which poses a threat, because some
other variable might be overwritten and the program works unexpectedly or even
crashes.

453

• Only the parser error and line number are reported during compilation. This
means a syntax error. If everything seems fine, the problem can be caused by
identifier/keyword/function name conflict.

• All jumps are translated as relative, i.e. the corresponding code is restricted to
32767 instructions (in portable format for various platforms).

• All valid variables and temporary results are stored in the stack, namely:

– Global variables and local static variables (permanently at the beginning of
the stack)

– Return addresses of functions

– Parameters of functions

– Local function variables

– Return value of function

– Temporary results of operations (i.e. the expression a=b+c; is evaluated in the
following manner: b is stored in the stack, c is stored in the stack (it follows
after b), the sum is evaluated, both values are removed from the stack and
the result is stored in the stack

Each simple variable (long or double) thus counts as one item in the stack. For
arrays, only the size is important, not the type.

• The arrays are passed to the functions as a reference. This means that the param-
eter counts as one item in the stack and that the function works directly with the
referenced array, not its local copy.

• If the stack size is not sufficient (less than space required for global variables plus
10), the stack size is automatically set to twice the size of the space required for the
global variables plus 100 (for computations, function parameters and local variables
in the case that only a few global variables are present).

• If basic debug level is selected, several checks are performed during the execution
of the script, namely initialization of the values which are read and array index
limits. Also a couple of uninitialized values are inserted in front of and at the back
of each declared array. The NOP instructions with line number of the source file are
added to the *.ill file.

• If full debug is selected, additional check is engaged – the attempts to access invalid
data range are monitored (e.g. stack overflow).

• The program size and stack size are set to a fixed value of 16384 in Simulink (for
implementation reasons). If this size is exceeded, an error is reported.

• The term instruction in the context of this block refers to an instruction of a
processor-independent mnemocode. The mnemocode is stored in the *.ill file.

454 CHAPTER 15. SPEC – SPECIAL BLOCKS

• The Open() function set serial line always 19200Bd, no parity, 8 bit per charac-
ter, 1 stopbit, binary mode, no timeout. Optional 2nd (bitrate) and 3th (parity)
parametrs can be used in the Open() function.

• Accessing text file is significantly slower that binary file. A advantage of the text
file is possibility view/edit data in file without special editor.

• This block does not call the parchange() function. It is necessary to call it in
init() function (if it is required).

• The block’s inputs are available in the init() function, but all are equal to zero.
It is possible (but not common) to set block’s outputs.

• The Open() function also allows opening of a regular file. Same codes like in the
LoadValue() function are used.

Debugging the code
Use the Trace command mentioned above.

Inputs
HLD Hold – the block code is not executed if the input is set to on bool

RESET Rising edge resets the block. The block gets initialized again (all global
variables are cleared and the Init() function is called).

bool

u0..u15 Input signals which are accessible from the script unknown

Outputs
iE Runtime error code. Unless iE = 0 or iE = −1 the algorithm is

stopped until it is reinitialized by the RESET input or by restarting
the executive)

error

0 No error occurred, the whole main() function was
executed (also the init() function).

-1 The execution was suspended using the Suspend()

command, i.e. the execution will resume as soon as the
REXLANG block is executed again

xxx . . . Error code of the REX Control System, see Appendix C
y0..y15 Output signals which can be set from within the script unknown

Parameters
srcname Source file name �srcfile.c string

455

srctype Coding of source file �1 long

1: C-like Text file respecting the C-like syntax described above
2: STL Text file respecting the IEC61131-3 standard. The

standard is implemented with the same limitations as
the C-like script (i.e. no structures, only INT, REAL
and STRING data types, function blocks are global
variables VAR_INPUT, outputs are global variables
VAR_OUTPUT, parameters are global variables
VAR_PARAMETER, standard functions according to
specification, system and communication functions are
the same as in C-like).

3: RLB REXLANG binary file which results from compilation of
C-like or STL scripts. Use this option if you do not wish
to share the source code of your block.

4: ILL Text file with mnemocodes, which can be compared to
assembler. This choice is currently not supported.

stack Stack size defined as number of variables. Default and recommended
value is 0, which enables automatic estimation of the necessary stack
size.

long

debug Debug level – checking is safer but slows down the execution of
the algorithm. Option No check can crash REXapplication on target
platform if code is incorect. �3

long

1 No check
2 Basic check
3 Full check

strs Total size of buffer for strings. Enter the maximum number of
characters to allocate memory for. The default value 0 means that
the buffer size is determined automatically.

long

p0..p15 Parameters which are accessible from the script unknown

Example C-like
The following example shows a simple code to sum two input signals and also sum two
user-defined parameters.

double input(0) input_u0;

double input(2) input_u2;

double parameter(0) param_p0;

double parameter(1) param_p1;

double output(0) output_y0;

double output(1) output_y1;

double my_value;

long init(void)

456 CHAPTER 15. SPEC – SPECIAL BLOCKS

{

my_value = 3.14;

return 0;

}

long main(void)

{

output_y0 = input_u0 + input_u2;

output_y1 = param_p0 + param_p1 + my_value;

return 0;

}

long exit(void)

{

return 0;

}

Example STL
And here is the same example in Structured Text.

VAR_INPUT

input_u0:REAL;

input_u1:REAL;

input_u2:REAL;

END_VAR

VAR_OUTPUT

output_y0:REAL;

output_y1:REAL;

END_VAR

VAR_PARAMETER

param_p0:REAL;

param_p1:REAL;

END_VAR

VAR

my_value: REAL;

END_VAR

FUNCTION init : INT;

my_value := 3.14;

init := 0;

END_FUNCTION

457

FUNCTION main : INT;

output_y0 := input_u0 + input_u2;

output_y1 := param_p0 + param_p1 + my_value;

main := 0;

END_FUNCTION

FUNCTION exit : INT;

exit := 0;

END_FUNCTION

458 CHAPTER 15. SPEC – SPECIAL BLOCKS

Chapter 16

MC_SINGLE – Motion control -
single axis blocks

Contents
RM_Axis – Motion control axis . 462
MC_AccelerationProfile, MCP_AccelerationProfile – Acceleration
profile . 468
MC_Halt, MCP_Halt – Stopping a movement (interruptible) 472
MC_HaltSuperimposed, MCP_HaltSuperimposed – Stopping a move-
ment (superimposed and interruptible) 473
MC_Home, MCP_Home – Homing . 474
MC_MoveAbsolute, MCP_MoveAbsolute – Move to position (absolute
coordinate) . 476
MC_MoveAdditive, MCP_MoveAdditive – Move to position (relative
to previous motion) . 480
MC_MoveRelative, MCP_MoveRelative – Move to position (relative
to execution point) . 483
MC_MoveSuperimposed, MCP_MoveSuperimposed – Superimposed move 486
MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute – Move
to position (absolute coordinate) 489
MC_MoveContinuousRelative, MCP_MoveContinuousRelative – Move
to position (relative to previous motion) 492
MC_MoveVelocity, MCP_MoveVelocity – Move with constant velocity 496
MC_PositionProfile, MCP_PositionProfile – Position profile 500
MC_Power – Axis activation (power on/off) 504
MC_ReadActualPosition – Read actual position 505
MC_ReadAxisError – Read axis error 506
MC_ReadBoolParameter – Read axis parameter (bool) 507
MC_ReadParameter – Read axis parameter 508

459

460 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadStatus – Read axis status 510
MC_Reset – Reset axis errors . 512
MC_SetOverride, MCP_SetOverride – Set override factors 513
MC_Stop, MCP_Stop – Stopping a movement 515
MC_TorqueControl, MCP_TorqueControl – Torque/force control . . . 517
MC_VelocityProfile, MCP_VelocityProfile – Velocity profile 520
MC_WriteBoolParameter – Write axis parameter (bool) 524
MC_WriteParameter – Write axis parameter 525
RM_AxisOut – Axis output . 527
RM_AxisSpline – Commanded values interpolation 529
RM_Track – Tracking and inching . 531

This library includes functional blocks for single axis motion control as it is defined in
the PLCopen specification. It is recommended to study the PLCopen specification prior to
using the blocks from this library. The knowledge of PLCopen is necessary for advanced
use of the blocks included in this library.

PLCopen defines all blocks with the MC_ prefix. This notation is kept within this
library. Nevertheless, there are also function blocks, which are not described by PLCopen
or are described as vendor specific. These blocks can be recognized by the RM_ prefix.
Note that PLCopen (and also IEC 61131-3 which is the base for PLCopen) does not use
block parameters, all the parameters are specified by input signals. In the REX control
system, block parameters are used to simplify usage of the blocks. To keep compatibility
with PLCopen and improve usability of the blocks, almost all of them are implemented
twice: with prefix MC_ without parameters (parameters are inputs) and with prefix MCP_

with parameters. Some blocks require additional vendor specific parameters. In such a
case even the MC_-prefixed blocks contain parameters.

PLCopen specifies that all inputs/parameters are sampled at rising-edge of the Execute
input. In the REX control system block parameters are usually changed very rare. There-
fore the parameters of the activated block have not be changed until block is finished
(e.g. while output Busy is on).

The REX control system does not allow input-output signals and all signals must
have different name. For these reasons the Axis input-output signal, which is used in all
blocks, is divided into input uAxis and output yAxis. The block algorithm copies the
input uAxis to the output yAxis. The yAxis output is not necessary for the function of
motion control blocks, but "chaining" the axis references makes it possible to order the
blocks and define priorities. Other reference signals are either defined as input-only or
use this mechanism as well.

PLCopen defines the outputs Busy, Active, CommandAborted as optional in almost
all blocks. In the REX control system, some of them are never set, but the outputs are
defined to simplify future extensions and/or changes in the implementation.

Units used for position and distance of axis are implementation specific. It can be
meters, millimeters, encoder ticks, angular degrees (for rotational axis) or any others,

461

but all blocks connected to one axis must use the same position units. Time is always
defined in seconds. Velocity unit is thus "position units per second" and acceleration
unit is "position units per square second".

The REX control system uses more threads for execution of the function blocks. In
standard function blocks the synchronization is provided by the system and the user
does not need to care about it. But using the reference references could violate the
synchronization mechanisms. However, there is no problem if all referenced blocks are
located in the same task and therefore e.g. the RM_Axis block must be in the same task
as all other blocks connected to this axis.

Some inputs/parameters are of enumeration type (for example BufferMode or Direction).
It is possible to choose any of the defined values for this type in the MCP_ version of
the blocks, although not all of them are valid for all blocks (for example the block
MC_MoveVelocity does not support Direction = shortest_way). Valid values for each
block are listed in this manual.

462 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

RM_Axis – Motion control axis

Block Symbol Licence: MOTION CONTROL

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition
RM_Axis

Function Description
The RM_AXIS block is a cornerstone of the motion control solution within the REX control
system. This base block keeps all status values and implements basic algorithm for one
motion control axis (one motor), which includes limits checking, emergency stop, etc. The
block is used for both real and virtual axes. The real axis must have a position feedback
controller, which is out of this block’s scope. The key status values are commanded
position, velocity, acceleration and torque, as well as state of the axis, axis error code
and a reference to the block, which controls the axis.

This block (like all blocks in the motion control library) does not implement a feed-
back controller which would keep the actual position as near to the commanded position
as possible. Such a controller must be provided by using other blocks (e.g. PIDU) or ex-
ternal (hardware) controller. The feedback signals are used for lag checking, homing and
could be used in special motion control blocks.

The parameters of this block correspond with the requirements of the PLCopen stan-
dard for an axis. If improper parameters are set, the errorID output is set to -700

(invalid parameter) and all motion blocks fail with the -720 error code (general failure).
Note that the default values for position, velocity and acceleration limits are in-

tentionally set to 0, which makes them invalid. Limits must always be set by the user
according to the real axis and the axis actuator.

Inputs
HLD Hold bool

off . . . Motion is allowed
on Axis is halted and no motion is possible

ActualPos Current position of the axis (feedback) double

ActualVelocity Current velocity of the axis (feedback) double

463

ActualTorque Current torque in the axis (feedback) double

LIMN Limit switch in negative direction bool

LIMZ Absolute switch or reference pulse for homing bool

LIMP Limit switch in positive direction bool

Outputs
axisRef Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis

connections are allowed)
reference

CommandedPosition Requested (commanded) position of the axis double

CommandedVelocity Requested (commanded) velocity of the axis double

CommandedAcceleration Requested (commanded) acceleration of the axis double

CommandedTorque Requested (commanded) torque in the axis double

iState State of the axis long

0 Disabled
1 Stand still
2 Homing
3 Discrete motion
4 Continuous motion
5 Synchronized motion
6 Coordinated motion
7 Stopping
8 Error stop

ErrorID Error code error

i REX general error

Parameters
AxisType Type of the axis �1 long

1 Linear axis
2 Cyclic axis with cyclic position sensor
3 Cyclic axis with linear position sensor

EnableLimitPos Enable positive position limit checking bool

SWLimitPos Positive position limit for application (MC blocks) double

MaxPosSystem Positive position limit for system double

EnableLimitNeg Enable negative position limit checking bool

SWLimitNeg Negative position limit for application (MC blocks) double

MinPosSystem Negative position limit for system double

EnablePosLagMonitor Enable monitoring of position lag bool

MaxPositionLag Maximal position lag double

MaxVelocitySystem Maximal allowed velocity for system double

MaxVelocityAppl Maximal allowed velocity for application (MC blocks) double

MaxAccelerationSystem Maximal allowed acceleration for system double

MaxAccelerationAppl Maximal allowed acceleration for application (MC blocks) double

MaxDecelerationSystem Maximal allowed deceleration for system double

464 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MaxDecelerationAppl Maximal allowed deceleration for application (MC blocks) double

MaxJerk Maximal allowed jerk [unit/s3] double

MaxTorque Maximal motor torque/force (0=not used) double

kta Torque-Acceleration ratio double

ReverseLimit Invert meaning of LIMN, LIMZ and LIMP inputs bool

Example
Following example illustrates basic principle of use of motion control blocks. It presents
the minimal configuration which is needed for operation of a physical or virtual axis. The
axis is represented by RM_Axis block. The limitations imposed on the motion trajectory
in form of maximum velocity, acceleration, jerk and position have to be set in parameters
of the RM_Axis block. The inputs can be connected to supply the values of actual position,
speed and torque (feedback for slip monitoring) or logical limit switch signals for homing
procedure. The axisRef output signal needs to be connected to any motion control block
related to the corresponding axis. The axis has to be activated by enabling the MC_Power
block. The state of the axis changes from Disabled to Standstill (see the following state
transition diagram) and any discrete, continuous or synchronized motion can be started
by executing a proper functional block (e.g. MC_MoveAbsolute). The trajectory of motion
in form of desired position, velocity and acceleration is generated in output signals of
the RM_Axis block. The reference values are provided to an actuator control loop which
is implemented locally in REX control system in the same or different task or they are
transmitted via a serial communication interface to end device which controls the motor
motion (servo amplifier, frequency inverter etc.). In case of any error, the axis performs an
emergency stop and indicates the error ID. The error has to be confirmed by executing the
MC_Reset block prior to any subsequent motion command. The following state diagram
demonstrates the state transitions of an axis.

velocity1

30

position1

100

on_off

1

mode1

2

execute1

[execute1]

direction1

1

deceleration1

20

cammanded_velocity

[commanded_velocity_for_drive_freq_converter]

cammanded_position

[commanded_position_for_drive_freq_converter]

cammanded_acceleration

[commanded_acceleration_for_drive_freq_converter]

actual_velocity

[actual_velocity_from_drive_freq_converter]

actual_position

[actual_position_from_drive_freq_converter]

acceleration1

50

RM_Axis

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

CommandedPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

MC_Power

uAxis

Enable

yAxis
Status

Busy
Active

Error
ErrorID

MC_MoveAbsolute − block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

465

Axis state transition diagram

Synchronized
motion

Discrete motion

Stopping

Standstill

Errorstop

Disabled

MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_PositionProfile
MC_Halt
(MC_Superimposed)

MC_Gearln (Slave)
MC_GearlnPos (Slave)
MC_Camln (Slave)
MC_CombineAxes (Slave)

MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile
MC_MoveContinousAbsolute
MC_MoveContinousRelative

D
o
n
e

Done

MC_Home
Note

4

Note 6

Note 3

Note 2

Note 1

Homing

MC_Stop

Note 5

Note

Note

Note

Note

Note

Note

1:

2:

3:

4:

5:

6:

. MC_Power.Enable = FALSE

MC_ResetAND MC_Power.Status = FALSE

MC_ResetAND MC_Power.Status = TRUEAND MC_Power.Enable = TRUE

MC_Power.Enable = TRUEAND MC_Power.Status = TRUE

MC_Stop.Done = TRUEAND MC_Stop.Execute = FALSE

From any state.An error in the axis occurred.

From any state and there is no error in the axis.

Continuous
motion

466 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Motion blending
According to PLCOpen specification, number of motion control blocks allow to specify
BufferMode parameter, which determines a behaviour of the axis in case that a motion
command is interrupted by another one before the first motion is finished. This transition
from one motion to another (called "Blending") can be handled in various ways. The
following table presents a brief explanation of functionality of each blending mode and
the resulting shapes of generated trajectories are illustrated in the figure. For detailed
description see full PLCOpen specification.

Aborting The new motion is executed immediately
Buffered the new motion is executed immediately after finishing

the previous one, there is no blending
Blending low the new motion is executed immediately after finishing

the previous one, but the axis will not stop between
the movements, the first motion ends with the lower
limit for maximum velocity of both blocks at the first
end-position

Blending high the new motion is executed immediately after finishing
the previous one, but the axis will not stop between
the movements, the first motion ends with the higher
limit for maximum velocity of both blocks at the first
end-position

Blending previous the new motion is executed immediately after finishing
the previous one, but the axis will not stop between
the movements, the first motion ends with the limit
for maximum velocity of first block at the first end-
position

Blending next the new motion is executed immediately after finishing
the previous one, but the axis will not stop between
the movements, the first motion ends with the limit
for maximum velocity of second block at the first end-
position

467

Illustration of blending modes

0 5 10 15
0

20

40
Aborting

ve
lo

ci
ty

Commanded velocity
Active block 1 =false/Active block 2 = ture
Value of the maximum velocity v

1
=30 (block 1)

Value of the maximum velocity v
2
=15 (block 2)

0 5 10 15
0

20

40
Buffered

ve
lo

ci
ty

0 5 10 15
0

20

40
Blending low

ve
lo

ci
ty

0 5 10 15
0

20

40
Blending high

ve
lo

ci
ty

0 5 10 15
0

20

40
Blending next

ve
lo

ci
ty

0 5 10 15
0

20

40
Blending previous

ve
lo

ci
ty

468 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_AccelerationProfile, MCP_AccelerationProfile – Acceler-
ation profile

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

TimeScale

AccelerationScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_AccelerationProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_AccelerationProfile

Function Description
The MC_AccelerationProfile and MCP_AccelerationProfile blocks offer the same
functionality, the only difference is that some of the inputs are available as parameters
in the MCP_ version of the block.

The MC_PositionProfile block commands a time-position locked motion profile.
Block implements two possibilities for definition of time-acceleration function:

1. sequence of values: the user defines a sequence of time-acceleration pairs. In each
time interval, the values of velocity are interpolated. Times sequence is in array times,
position sequence is in array values. Time sequence must be increasing and must start
with zero or zero must be between the first and last point. Execution always starts
from zero time, so if the sequence start with negative time, part of the profile is not
executed (could be used for debugging or time shift). For MC_VelocityProfile and
MC_AccelerationProfile interpolation is linear, but for MC_PositionProfile, 3rd order
polynomial is used in order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolated
by 5th order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where beginning of

the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the first (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.

469

Note 2: parameter values must be set as vector in all cases, e.g. text string must not
include semicolon.

Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or
values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

Note 4: in the spline mode, polynomial is always 5th order and always in position
(also for sibling block MC_PositionProfile and MC_VelocityProfile) and it couldn’t
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
profile is different from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

TimeScale Overall scale factor in time double

AccelerationScale Overall scale factor in value double

Offset Overall profile offset in value double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

470 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

ErrorID Error code error

i REX general error

Parameters
alg Algorithm for interpolation �2 long

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

cSeg Number of profile segments �3 long

times Times when segments are switched �[0 30] double

values Values or interpolating polynomial coefficients (a0, a1, a2, ...)
�[0 100 100 50]

double

471

Example

timeScale

1.0

posScale

1.0

offset

0

mode1

2

MC_AccelerationProfile

uAxis

Execute

TimeScale

AccelerationScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

bo
ol

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

bo
ol

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

bo
ol

0 0.5 1 1.5 2 2.5 3
−200

0

200
Commanded acceleration

ac
ce

le
ra

tio
n

0 0.5 1 1.5 2 2.5 3
−10

0

10
Commanded velocity

ve
lo

ci
ty

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

po
si

tio
n

472 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Halt, MCP_Halt – Stopping a movement (interruptible)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_Halt

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_Halt

Function Description
The MC_Halt and MCP_Halt blocks offer the same functionality, the only difference is
that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Halt block commands a controlled motion stop and transfers the axis to the
state DiscreteMotion. After the axis has reached zero velocity, the Done output is set
to true immediately and the axis state is changed to Standstill.

Note 1: Block MC_Halt is intended for temporary stop of an axis under normal work-
ing conditions. Any next motion command which cancels the MC_Halt can be executed
in nonbuffered mode (opposite to MC_Stop, which cannot be interrupted). The new com-
mand can start even before the stopping sequence was finished.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

473

MC_HaltSuperimposed, MCP_HaltSuperimposed – Stopping a move-
ment (superimposed and interruptible)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_HaltSuperimposed

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_HaltSuperimposed

Function Description

The MC_HaltSuperimposed and MCP_HaltSuperimposed blocks offer the same func-
tionality, the only difference is that some of the inputs are available as parameters in the
MCP_ version of the block.

Block MC_HaltSuperimposed commands a halt to all superimposed motions of the
axis. The underlying motion is not interrupted.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

474 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Home, MCP_Home – Homing

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Velocity

Acceleration

TorqueLimit

TimeLimit

DistanceLimit

Position

Direction

HomingMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_Home

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_Home

Function Description
The MC_Home and MCP_Home blocks offer the same functionality, the only difference is
that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Home block commands the axis to perform the "search home" sequence. The
details of this sequence are described in PLCopen and can be set by parameters of the
block. The "Position" input is used to set the absolute position when reference signal is
detected. This Function Bock completes at "StandStill".

Note 1: Parameter/input BufferMode is not supported. Mode is always Aborting. It
is not limitation, because homing is typically done once in initialization sequence before
some regular movement is proceeded.

Note 2: Homing procedure requires some of RM_Axis block input connected. Depend-
ing on homing mode, ActualPos, ActualTorque, LimP, LimZ, LimN can be required. It is
expected that only one method is used. Therefore, there are no separate inputs for zero
switch and encoder reference pulse (both must be connected to LimZ).

Note 3: HomingMode=4(Direct) only sets the actual position. Therefore, the MC_SetPosition
block is not implemented. HomingMode=5(Absolute) only switches the axis from state
Homing to state StandStill.

Note 4: Motion trajectory for homing procedure is implemented in simpler way than
for regular motion commands - acceleration and deceleration is same (only one parame-
ter) and jerk is not used. For extremely precise homing (position set), it is recommended
to run homing procedure twice. First, homing procedure is run with "high" velocity to

475

move near zero switch, then small movement (out of zero switch) follows and finally
second homing procedure with "small" velocity is performed.

Note 5: HomingMode=6(Block) detect home-position when the actual torque reach
value in parameter TorqueLimit or position lag reach value in parameter MaxPositionLag
in attached RM_Axis block (only if the parameter has positive value).

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

TorqueLimit Maximal allowed torque/force double

TimeLimit Maximal allowed time for the whole algorithm [s] double

DistanceLimit Maximal allowed distance for the whole algorithm [unit] double

Position Requested target position (absolute) [unit] double

Direction Direction of movement (cyclic axis or special case only) long

1 Positive
2 Shortest
3 Negative
4 Current

HomingMode Homing mode algorithm long

1 Absolute switch
2 Limit switch
3 Reference pulse
4 Direct (user reference)
5 Absolute encoder
6 Block

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

476 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveAbsolute, MCP_MoveAbsolute – Move to position (ab-
solute coordinate)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_MoveAbsolute

Function Description
The MC_MoveAbsolute and MCP_MoveAbsolute blocks offer the same functionality, the
only difference is that some of the inputs are available as parameters in the MCP_ version
of the block.

The MC_MoveAbsolute block moves an axis to specified position as fast as possible.
If no further action is pending, final velocity is zero (axis moves to position and stops)
otherwise it depends on blending mode. For blending purposes, start and stop velocity
of this block is maximum velocity with direction respecting current and final position.
If start velocity of next pending block is in opposite direction, then blending velocity is
always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

The MC_MoveRelative block act almost same as MC_MoveAbsolute. The only differ-
ence is the final position is computed adding input Distance to current (when rising
edge on input Execute occurred) position.

477

The MC_MoveAdditive block act almost same as MC_MoveRelative. The only differ-
ence is the final position is computed adding input Distance to final position of the
previous block.

The MC_MoveSuperimposed block acts almost the same as the MC_MoveRelative

block. The only difference is the current move is not aborted and superimposed move is
executed immediately and added to current move. Original move act like superimposed
move is not run.

The following table describes all inputs, parameters and outputs which are used in
some of the blocks in the described block suite.

Inputs
uAxis AAxis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Position Requested target position (absolute) [unit] double

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Direction Direction of movement (cyclic axis or special case only) long

1 Positive
2 Shortest
3 Negative
4 Current

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

478 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

479

Example

velocity2

15
velocity1

30
position2

150
position1

100

mode2

2
mode1

2

direction2

1
direction1

1

deceleration2

10
deceleration1

20
acceleration2

25
acceleration1

50

MC_MoveAbsolute − block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute − block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute − block 1

bo
ol

0 5 10 15

0

0.5

1

Active − block 1

bo
ol

0 5 10 15

0

0.5

1

Done − block 1

bo
ol

0 5 10 15

0

0.5

1

Execute − block 2

bo
ol

0 5 10 15

0

0.5

1

Active − block 2

bo
ol

0 5 10 15

0

0.5

1

Done − block 2

bo
ol

0 5 10 15
0

50
Commanded velocity

ve
lo

ci
ty

velocity2

velocity1

0 5 10 15
0

100

200
Commanded position

Time [s]

po
si

tio
n

480 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveAdditive, MCP_MoveAdditive – Move to position (rela-
tive to previous motion)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAdditive

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_MoveAdditive

Function Description

The MC_MoveAdditive and MCP_MoveAdditive blocks offer the same functionality,
the only difference is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveAdditive block moves an axis to specified position as fast as possible.
The final position is determined by adding the value of Distance parameter to final
position of previous motion block which was controlling the axis. If no further action is
pending, final velocity is zero (axis moves to position and stops) otherwise it depends on
blending mode. For blending purposes, start and stop velocity of this block is maximum
velocity with direction respecting current and final position. If start velocity of next
pending block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

481

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Distance Requested target distance (relative to start point) [unit] double

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

482 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

15
velocity1

30
position2

150
position1

100

mode2

2
mode1

2
deceleration2

10
deceleration1

20
acceleration2

25
acceleration1

50

MC_MoveAdditive1 − block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAdditive − block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Execute − block 1

bo
ol

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Active − block 1

bo
ol

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Done − block 1

bo
ol

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Execute − block 2

bo
ol

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Active − block 2

bo
ol

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Done − block 2

bo
ol

0 2 4 6 8 10 12 14 16 18 20
0

50
Commanded velocity

ve
lo

ci
ty

velocity2

velocity1

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300
Commanded position

Time [s]

po
si

tio
n

483

MC_MoveRelative, MCP_MoveRelative – Move to position (rela-
tive to execution point)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_MoveRelative

Function Description

The MC_MoveRelative and MCP_MoveRelative blocks offer the same functionality,
the only difference is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveRelative block moves an axis to specified position as fast as possible.
The final position is determined by adding the value of Distance parameter to the actual
position at the moment of triggering the Execute input. If no further action is pending,
final velocity is zero (axis moves to position and stops) otherwise it depends on blending
mode. For blending purposes, start and stop velocity of this block is maximum velocity
with direction respecting current and final position. If start velocity of next pending
block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

484 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Distance Requested target distance (relative to execution point) [unit] double

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [[unit/s2] double

Deceleration Maximal allowed deceleration [[unit/s2] double

Jerk Maximal allowed jerk [[unit/s3] double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

485

Example

velocity2

15
velocity1

30
position2

150
position1

100

mode2

2
mode1

2
deceleration2

10
deceleration1

20
acceleration2

25
acceleration1

50

MC_MoveRelative − block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative − block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute − block 1

bo
ol

0 5 10 15

0

0.5

1

Active − block 1

bo
ol

0 5 10 15

0

0.5

1

Done − block 1

bo
ol

0 5 10 15

0

0.5

1

Execute − block 2

bo
ol

0 5 10 15

0

0.5

1

Active − block 2

bo
ol

0 5 10 15

0

0.5

1

Done − block 2

bo
ol

0 5 10 15
0

50
Commanded velocity

ve
lo

ci
ty

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

po
si

tio
n

486 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveSuperimposed, MCP_MoveSuperimposed – Superimposed
move

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveSuperimposed

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_MoveSuperimposed

Function Description

The MC_MoveSuperimposed and MCP_MoveSuperimposed blocks offer the same func-
tionality, the only difference is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_MoveSuperimposed block moves an axis to specified position as fast as pos-
sible (with respect to set limitations). Final position is specified by input parameter
Distance. In case that the axis is already in motion at the moment of execution of the
MC_MoveSuperimposed block, the generated values of position, velocity and acceleration
are added to the values provided by the previous motion block. If there is no previous
motion, the block behaves in the same way as the MC_MoveRelative command.

Note:There is no BufferMode parameter which is irrelevant in the superimposed
mode. If there is already an superimposed motion running at the moment of execution,
the new block is started immediately (analogous to aborting mode).

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Distance Requested target distance (relative to execution point) [unit] double

VelocityDiff Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

487

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

488 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity_diff2

15
velocity1

30
position2

150
position1

100

mode1

2
deceleration2

10
deceleration1

20
acceleration2

25
acceleration1

50

MC_MoveSuperimposed − block 2

uAxis

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative − block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute − block 1

bo
ol

0 5 10 15

0

0.5

1

Active − block 1

bo
ol

0 5 10 15

0

0.5

1

Done − block 1

bo
ol

0 5 10 15

0

0.5

1

Execute − block 2

bo
ol

0 5 10 15

0

0.5

1

Active − block 2

bo
ol

0 5 10 15

0

0.5

1

Done − block 2

bo
ol

0 5 10 15
0

50
Commanded velocity

ve
lo

ci
ty

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

po
si

tio
n

489

MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute – Move
to position (absolute coordinate)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveContinuousAbsolute

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy

Active
Error

ErrorID

MCP_MoveContinuousAbsolute

Function Description
The MC_MoveContinuousAbsolute and MCP_MoveContinuousAbsolute blocks offer the
same functionality, the only difference is that some of the inputs are available as param-
eters in the MCP_ version of the block.

The MC_MoveContinuousAbsolute block moves an axis to specified position as fast
as possible. If no further action is pending, final velocity is specified by parameter
EndVelocity. For blending purposes, start and stop velocity of this block is maximum
velocity with direction respecting current and final position. If start velocity of next
pending block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Note 1: If the EndVelocity is set to zero value, the block behaves in the same way
as MC_MoveAbsolute.

Note 2: If next motion command is executed before the final position is reached, the

490 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

block behaves in the same way as MC_MoveAbsolute.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Position Requested target position (absolute) [unit] double

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Direction Direction of movement (cyclic axis or special case only) long

1 Positive
2 Shortest
3 Negative
4 Current

EndVelocity End velocity double

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

InEndVelocity Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

491

Example

velocity2

20
velocity1

30
position2

150
position1

100

mode2

2
mode1

2

end_velocity

10

direction2

1
direction1

1

deceleration2

10
deceleration1

20
acceleration2

25
acceleration1

50

MC_MoveContinuousAbsolute − block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID
MC_MoveAbsolute − block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[Axis]

0 5 10 15

0

0.5

1

Execute − block 1

bo
ol

0 5 10 15

0

0.5

1

Active − block 1

bo
ol

0 5 10 15

0

0.5

1

Done − block 1

bo
ol

0 5 10 15

0

0.5

1

Execute − block 2

bo
ol

0 5 10 15

0

0.5

1

Active − block 2

bo
ol

0 5 10 15

0

0.5

1

Done − block 2

bo
ol

0 5 10 15
0

50
Commanded velocity

ve
lo

ci
ty

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

po
si

tio
n

492 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveContinuousRelative, MCP_MoveContinuousRelative – Move
to position (relative to previous motion)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveContinuousRelative

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy

Active
Error

ErrorID

MCP_MoveContinuousRelative

Function Description
The MC_MoveContinuousRelative and MCP_MoveContinuousRelative blocks offer the
same functionality, the only difference is that some of the inputs are available as param-
eters in the MCP_ version of the block.

The MC_MoveContinuousRelative block moves an axis to specified position as fast
as possible. The final position is determined by adding the value of Distance parameter
to the actual position at the moment of triggering the Execute input. If no further action
is pending, final velocity is specified by parameter EndVelocity. For blending purposes,
start and stop velocity of this block is maximum velocity with direction respecting current
and final position. If start velocity of next pending block is in opposite direction, then
blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Note 1: If the EndVelocity is set to zero value, the block behaves in the same way
as MC_MoveRelative.

493

Note 2: If next motion command is executed before the final position is reached, the
block behaves in the same way as MC_MoveRelative.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Distance Requested target distance (relative to execution point) [unit] double

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

494 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

EndVelocity End velocity long

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

InEndVelocity PLCopen Done (algorithm finished) bool

CommandAborted PLCopen CommandAborted (algorithm was aborted) bool

Busy PLCopen Busy (algorithm not finished yet) bool

Active PLCopen Active (the block is controlling the axis) bool

Error PLCopen Error (error occurred) bool

ErrorID Error code error

i REX general error

495

Example

velocity2

20
velocity1

30
position2

150
position1

100

mode2

2
mode1

2

end_velocity

10

deceleration2

10
deceleration1

20
acceleration2

25
acceleration1

50

MC_MoveRelative − block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveContinuousRelative − block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute − block 1

bo
ol

0 5 10 15

0

0.5

1

Active − block 1

bo
ol

0 5 10 15

0

0.5

1

Done − block 1

bo
ol

0 5 10 15

0

0.5

1

Execute − block 2

bo
ol

0 5 10 15

0

0.5

1

Active − block 2

bo
ol

0 5 10 15

0

0.5

1

Done − block 2

bo
ol

0 5 10 15
0

50
Commanded velocity

ve
lo

ci
ty

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

po
si

tio
n

496 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveVelocity, MCP_MoveVelocity – Move with constant ve-
locity

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveVelocity

uAxis

Execute

yAxis
InVelocity

CommandAborted
Busy

Active
Error

ErrorID

MCP_MoveVelocity

Function Description

The MC_MoveVelocity and MCP_MoveVelocity blocks offer the same functionality,
the only difference is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveVelocity block changes axis velocity to specified value as fast as possible
and keeps the specified velocity until the command is aborted by another block or event.

Note: parameter Direction enumerate also shortest_way although for this block it
is not valid value.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Direction Direction of movement (cyclic axis or special case only) long

1 Positive
2 Shortest
3 Negative
4 Current

497

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

InVelocity Requested velocity reached bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

498 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

15
velocity1

30

mode2

1
mode1

1
direction2

1
direction1

1

deceleration2

10
deceleration1

20

axis

[axis]

acceleration2

25
acceleration1

50

MC_MoveVelocity − block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveVelocity − block 1

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

499

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute − block 1

bo
ol

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active − block 1

bo
ol

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done − block 1

bo
ol

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute − block 2

bo
ol

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active − block 2

bo
ol

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done − block 2

bo
ol

0 1 2 3 4 5 6 7 8 9 10
0

50
Commanded velocity

ve
lo

ci
ty

velocity2

velocity1

0 1 2 3 4 5 6 7 8 9 10
0

100

200
Commanded position

Time [s]

po
si

tio
n

500 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_PositionProfile, MCP_PositionProfile – Position profile

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

TimeScale

PositionScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_PositionProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_PositionProfile

Function Description

The MC_PositionProfile and MCP_PositionProfile blocks offer the same func-
tionality, the only difference is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_PositionProfile block commands a time-position locked motion profile.
Block implements two possibilities for definition of time-position function:

1. sequence of values: the user defines a sequence of time-position pairs. In each time
interval, the values of position are interpolated. Times sequence is in array times, position
sequence is in array values. Time sequence must be increasing and must start with zero or
zero must be between the first and last point. Execution always starts from zero time, so if
the sequence start with negative time, part of the profile is not executed (could be used
for debugging or time shift). For MC_VelocityProfile and MC_AccelerationProfile

interpolation is linear, but for MC_PositionProfile, 3rd order polynomial is used in
order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolate
byd 5th order polynomial p(x) = a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 where beginning

of the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the first (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.

501

Note 2: parameter values must be set as vector in all cases, e.g. text string must not
include semicolon.

Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or
values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

Note 4: in the spline mode, polynomial is always 5th order and always in position (also
for sibling block MC_VelocityProfile and MC_AccelerationProfile) and it couldn’t
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
profile is different from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

TimeScale Overall scale factor in time double

PositionScale Overall scale factor in value double

Offset Overall profile offset in value double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

502 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

ErrorID Error code error

i REX general error

Parameters
alg Algorithm for interpolation �2 long

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

cSeg Number of profile segments �3 long

times Times when segments are switched �[0 30] double

values Values or interpolating polynomial coefficients (a0, a1, a2, ...)
�[0 100 100 50]

double

503

Example

timeScale

1.0

posScale

1.0

offset

0

mode1

2

MC_PositionProfile

uAxis

Execute

TimeScale

PositionScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

bo
ol

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

bo
ol

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

bo
ol

0 0.5 1 1.5 2 2.5 3
−200

0

200
Commanded acceleration

ac
ce

le
ra

tio
n

0 0.5 1 1.5 2 2.5 3
−10

0

10
Commanded velocity

ve
lo

ci
ty

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

po
si

tio
n

504 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Power – Axis activation (power on/off)

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power

Function Description

The MC_Power block must be used with all axes. It is the only way to switch an axis
from disable state to standstill (e.g. operation) state. The Enable input must be set (non
zero value) for whole time the axis is active. The Status output can be used for switch
on and switch off of the motor driver (logical signal for enabling the power stage of the
drive).

The block does not implement optional parameters/inputs Enable_Positive,
Enable_Negative. The same functionality can be implemented by throwing the limit
switches (inputs limP and limN of block RM_Axis).

If the associated axis is turned off (by setting the Enable input to zero) while a motion
is processed (commanded velocity is not zero), error stoping sequence is activated and
the status is switched to off/diabled when the motion stops (commanded velocity reaches
zero value).

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enable Block function is enabled bool

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Status Effective state of the power stage bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

505

MC_ReadActualPosition – Read actual position

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
Position

MC_ReadActualPosition

Function Description

The block MC_ReadActualPosition displays actual value of position of a connected
axis on the output Position. The output is valid only while the block is enabled by the
logical input signal Enable.

The block displays logical position value which is entered into all of the motion
blocks as position input. In case that no absolute position encoder is used or the internal
position is set in other way (e.g. via MC_Home block), the CommandedPosition output of
the corresponding RM_Axis may display different value.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enable Block function is enabled bool

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
Position Actual absolute position double

506 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadAxisError – Read axis error

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
AxisErrorID

MC_ReadAxisError

Function Description

The block MC_ReadAxisError displays actual error code of a connected axis on the
output AxisErrorID. In case of no error, the output is set to zero. The error value is
valid only while the block is enabled by the logical input signal Enable. This block is
implemented for sake of compatibility with PLCOpen specification as it displays duplicit
information about an error which is also accessible on the ErrorID output of the RM_Axis
block.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enable Block function is enabled bool

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
AxisErrorID Error code read from axis error

i REX general error

507

MC_ReadBoolParameter – Read axis parameter (bool)

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

ParameterNumber

yAxis
Valid
Busy
Error

ErrorID
Value

MC_ReadBoolParameter

Function Description

The block MC_ReadBoolParameter displays actual value of various signals related to
the connected axis on its Value output. The user chooses from a set of accessible logical
variables by setting the ParameterNumber input. The output value is valid only while
the block is activated by the logical Enable input.

The block displays the parameters and outputs of RM_Axis block and is implemented
for sake of compatibility with the PLCOpen specification.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enable Block function is enabled bool

ParameterNumber Parameter ID long

4 Enable sw positive limit
5 Enable sw negative limit
6 Enable position lag monitoring

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
Value Parameter value bool

508 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadParameter – Read axis parameter

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

ParameterNumber

yAxis
Valid
Busy
Error

ErrorID
Value

MC_ReadParameter

Function Description

The block MC_ReadParameter displays actual value of various system variables of the
connected axis on its Value output. The user chooses from a set of accessible variables
by setting the ParameterNumber input. The output value is valid only while the block is
activated by the logical Enable input.

The block displays the parameters and outputs of RM_Axis block and is implemented
for sake of compatibility with the PLCOpen specification.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enable Block function is enabled bool

ParameterNumber Parameter ID long

1 Commanded position
2 Positive sw limit switch
3 Negative sw limit switch
7 Maximal position lag
8 Maximal velocity (system)
9 Maximal velocity (appl)
10 Actual velocity
11 Commanded velocity
12 Maximal acceleration (system)
13 Maximal acceleration (appl.)
14 Maximal deceleration (system)
15 Maximal deceleration (appl.)
16 Maximal jerk
1000 . . Actual position
1001 . . Maximal torque/force
1003 . . Actual torque/force
1004 . . Commanded torque/force

509

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
Value Parameter value double

510 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadStatus – Read axis status

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
ErrorStop
Disabled
Stopping

StandStill
DiscreteMotion

ContinuousMotion
SynchronizedMotion

Homing
ConstantVelocity

Accelerating
Decelerating

MC_ReadStatus

Function Description

The block MC_ReadStatus indicates the state of the connected axis on its logical
output signals. The values of the states are valid only while the Enable input is set to
nonzero value. This state is indicated by Valid output.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enable Block function is enabled bool

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
ErrorStop Axis is in the ErrorStop state bool

Disabled Axis is in the Disabled state bool

Stopping Axis is in the Stoping state bool

StandStill Axis is in the StandStill state bool

DiscreteMotion Axis is in the DiscreteMotion state bool

511

ContinuousMotion Axis is in the ContinuousMotion state bool

SynchronizedMotion Axis is in the SynchronizedMotion state bool

Homing Axis is in the Homing state bool

ConstantVelocity Axis is moving with constant velocity bool

Accelerating Axis is accelerating bool

Decelerating Axis is decelerating bool

512 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Reset – Reset axis errors

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done
Busy
Error

ErrorID

MC_Reset

Function Description

The MC_Reset block makes the transition from the state ErrorStop to StandStill by
resetting all internal axis-related errors.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

513

MC_SetOverride, MCP_SetOverride – Set override factors

Block Symbols Licence: MOTION CONTROL

uAxis

Enable

VelFactor

AccFactor

JerkFactor

yAxis

Enabled

Busy

Error

ErrorID

MC_SetOverride

uAxis

Enable

yAxis
Enabled

Busy
Error

ErrorID

MCP_SetOverride

Function Description

The MC_SetOverride and MCP_SetOverride blocks offer the same functionality, the
only difference is that some of the inputs are available as parameters in the MCP_ version
of the block.

The MC_SetOverride block sets the values of override for the whole axis, and all
functions that are working on that axis. The override parameters act as a factor that is
multiplied to the commanded velocity, acceleration, deceleration and jerk of the move
function block.

This block is level-sensitive (not edge-sensitive like other motion control blocks). So
factors are update in each step while input Enable is not zero. It leads to reacalcu-
lation of movement’s path if a block like MC_MoveAbsolute commands the axis. This
recalculation needs lot of CPU time and also numerical problem could appear. For this
reasons, a deadband (parameter diff) is established. The movement’s path recalculation
is proceeded only if one of the factors is changed more then the deadband.

Note: all factor must be positive. Factor greater then 1.0 are possible, but often lead
to overshooting of axis limits and failure of movement (with errorID=-700 - invalid
parameter; if factor is set before start of block) or error stop of axis (with errorID=

-701 - out of range; if factor is changed within movement and actual value overshoot
limit).

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enable Block function is enabled bool

VelFactor Velocity multiplication factor double

AccFactor Acceleration/deceleration multiplication factor double

514 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

JerkFactor Jerk multiplication factor double

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Enabled Block function is enabled bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

Parameter
diff Deadband (difference for recalculation) ↓0.0 ↑1.0 �0.1 double

515

MC_Stop, MCP_Stop – Stopping a movement

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_Stop

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_Stop

Function Description

The MC_Stop and MCP_Stop blocks offer the same functionality, the only difference is
that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Stop block commands a controlled motion stop and transfers the axis to the
state Stopping. It aborts any ongoing Function Block execution. While the axis is in
state Stopping, no other FB can perform any motion on the same axis. After the axis
has reached velocity zero, the Done output is set to true immediately. The axis remains
in the state Stopping as long as Execute is still true or velocity zero is not yet reached.
As soon as Done=true and Execute=false the axis goes to state StandStill.

Note 1: parameter/input BufferMode is not supported. Mode is always Aborting.
Note 2: Failing stop-command could be dangerous. This block does not generate

invalid-parameter-error but tries to stop the axis anyway (e.g. uses parameteres from
RM_Axis or generates error-stop-sequence).

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed
reference

Execute The block is activated on rising edge bool

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

516 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

517

MC_TorqueControl, MCP_TorqueControl – Torque/force control

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Torque

TorqueRamp

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InTorque

CommandAborted

Busy

Active

Error

ErrorID

MC_TorqueControl

uAxis

Execute

yAxis
InTorque

CommandAborted
Busy

Active
Error

ErrorID

MCP_TorqueControl

Function Description

The MC_TorqueControl and MCP_TorqueControl blocks offer the same functionality,
the only difference is that some of the inputs are available as parameters in the MCP_

version of the block.

The MCP_TorqueControl block generates constant slope torque/force ramp until max-
imum requested value has been reached. Similar profile is generated for velocity. The
motion trajectory is limited by maximum velocity, acceleration / deceleration, and jerk,
or by the value of the torque, depending on the mechanical circumstances.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

Torque Maximal allowed torque/force double

TorqueRamp Maximal allowed torque/force ramp double

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [uunit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

518 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Direction Direction of movement (cyclic axis or special case only) long

1 Positive
2 Shortest
3 Negative
4 Current

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

InTorque Requested torque/force is reached bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

Parameter
kma Torque/force to acceleration ratio double

519

Example

velocity

30

torque_ramp

50

torque

100

mode

1

direction

1

deceleration

20

acceleration

50

MC_TorqueControl

uAxis

Execute

Torque

TorqueRamp

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InTorque

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

bo
ol

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

bo
ol

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done

bo
ol

0 1 2 3 4 5 6 7 8 9 10
0

20

40
Commanded velocity

ve
lo

ci
ty

0 1 2 3 4 5 6 7 8 9 10
0

200

400
Commanded position

po
si

tio
n

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Commanded torque

Time [s]

to
rq

ue

520 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_VelocityProfile, MCP_VelocityProfile – Velocity profile

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

TimeScale

VelocityScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_VelocityProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_VelocityProfile

Function Description

The MC_PositionProfile block commands a time-position locked motion profile.
Block implements two possibilities for definition of time-velocity function:

1. sequence of values: the user defines a sequence of time-velocity pairs. In each time
interval, the values of velocity are interpolated. Times sequence is in array times, position
sequence is in array values. Time sequence must be increasing and must start with zero or
zero must be between the first and last point. Execution always starts from zero time, so if
the sequence start with negative time, part of the profile is not executed (could be used
for debugging or time shift). For MC_VelocityProfile and MC_AccelerationProfile

interpolation is linear, but for MC_PositionProfile, 3rd order polynomial is used in
order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolated
by 5th order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where beginning of

the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the first (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.
Note 2: parameter values must be set as vector in all cases, e.g. text string must not

include semicolon.
Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or

values) leads to unpredictable result and in some cases crashes whole runtime execution

521

(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

Note 4: in the spline mode, polynomial is always 5th order and always in position (also
for sibling block MC_PositionProfile and MC_AccelerationProfile) and it couldn’t
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
profile is different from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

TimeScale Overall scale factor in time double

VelocityScale Overall scale factor in value double

Offset Overall profile offset in value double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

522 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Parameters
alg Algorithm for interpolation �1 long

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

cSeg Number of profile segments �3 long

times Times when segments are switched �[0 15 25 30] double

values Values or interpolating polynomial coefficients (a0, a1, a2, ...)
�[0 100 100 50]

double

523

Example

timeScale

1.0

posScale

1.0

offset

0

mode

2

MC_VelocityProfile

uAxis

Execute

TimeScale

VelocityScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

bo
ol

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

bo
ol

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

bo
ol

0 0.5 1 1.5 2 2.5 3
−200

0

200
Commanded acceleration

ac
ce

le
ra

tio
n

0 0.5 1 1.5 2 2.5 3
−10

0

10
Commanded velocity

ve
lo

ci
ty

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

po
si

tio
n

524 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

MC_WriteBoolParameter – Write axis parameter (bool)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

ParameterNumber

Value

yAxis

Done

Busy

Error

ErrorID

MC_WriteBoolParameter

Function Description

The block MC_WriteBoolParameter writes desired value of various system parameters
entered on its Value input to the connected axis. The user chooses from a set of accessible
logical variables by setting the ParameterNumber input.

The block is implemented for sake of compatibility with the PLCOpen specification as
the parameters can be written by the SETPB block.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

ParameterNumber Parameter ID long

4 Enable sw positive limit
5 Enable sw negative limit
6 Enable position lag monitoring

Value Parameter value bool

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

525

MC_WriteParameter – Write axis parameter

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

ParameterNumber

Value

yAxis

Done

Busy

Error

ErrorID

MC_WriteParameter

Function Description

The block MC_WriteParameter writes desired value of various system parameters
entered on its Value input to the connected axis. The user chooses from a set of accessible
variables by setting the ParameterNumber input.

The block is implemented for sake of compatibility with the PLCOpen specification as
the parameters can be written by the SETPR block.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Execute The block is activated on rising edge bool

ParameterNumber Parameter ID long

2 Positive sw limit switch
3 Negative sw limit switch
7 Maximal position lag
8 Maximal velocity (system)
9 Maximal velocity (appl)
13 Maximal acceleration (appl.)
15 Maximal deceleration (appl.)
16 Maximal jerk
1001 . . Maximal torque/force

Value Parameter value double

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

526 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

ErrorID Error code error

i REX general error

527

RM_AxisOut – Axis output

Block Symbol Licence: MOTION CONTROL

uAxis

pos0
vel0

acc0
trq0

pos1
vel1

acc1
trq1

pos2
vel2

acc2
trq2

iState
ErrorID

iTick

RM_AxisOut

Function Description

The RM_AxisOut block allows an access to important states of block RM_Axis. Same
outputs are also available directly on RM_Axis (some of them), but this direct output is
one step delayed. Blocks are ordered for execution by flow of a signal, so RM_Axis is first
then all motion blocks (that actualize RM_Axis state), then RM_AxisOut (should be last)
and finally waiting for next period.

Note 1: Control system REX orders blocks primary by flow of signal, secondarily by
name of block (ascendent in alphabetical order), so name like "zzz" is good choice. For
checking the order, you can use RexView tool where the blocks are sorted by execution
order.

Note 2: almost all blocks do not work with torque so commanded torque is 0.
Commanded acceleration and torque should be used as feed-forward value for posi-
tion/velocity controller so this value does not make any problem.

Inputs
uAxis axis reference that must be connected to axisRef of the RM_Axis block

(direct or indirect throw output yAxis of some other block)
reference

Input
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

528 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Outputs
pos0 Current commanded position [unit] double

vel0 Current commanded velocity [unit/s] double

acc0 Current commanded acceleration [unit/s2] double

trq0 Current commanded torque/force (if generated) double

pos1 Next step commanded position [unit] double

vel1 Next step commanded velocity [unit/s] double

acc1 Next step commanded acceleration/deceleration [unit/s2] double

trq1 Next step commanded torque/force (if generated) double

pos2 2nd next step commanded position [unit] double

vel2 2nd next step commanded velocity [unit/s] double

acc2 2nd next step commanded acceleration/deceleration [unit/s2] double

trq2 2nd next step commanded torque/force (if generated) double

iState State of the axis long

0 Disabled
1 Stand still
2 Homing
3 Discrete motion
4 Continuous motion
5 Synchronized motion
6 Coordinated motion
7 Stopping
8 Error stop

ErrorID Error code error

i REX general error
iTick Current tick long

529

RM_AxisSpline – Commanded values interpolation

Block Symbol Licence: MOTION CONTROL

uAxis

pos
vel
trq

iState

RM_AxisSpline

Function Description

There are lot of motion control blocks which implement complicated algorithms so
they require bigger sampling period (typical update rate is from 10 to 200ms). On the
other side, the motor driver usually requires small sampling period for smooth/waveless
movement. The RM_AxisSpline block solves this problem of multirate execution of mo-
tion planning and motion control levels. The block can run in different task than other
motion control blocks with highest sampling period possible. It interpolates commanded
position, velocity and torque and generates smooth curve which is more suited for motor
driver controllers.

There are two possibilites of connection to RM_Axis block: connect all necessary
values (outputs of the block RM_AxisOut) as input of interpolating block or use only
axis reference and read the state directly. This block uses axis reference. For correct
synchronization between two tasks, the block RM_Axis must be executed first followed
by all axis related motion control blocks and finally by block RM_AxisOut at the end.

Note 1:For interpolation of position signal, 3rd order polynomial p(t) is used, where
ps(0) = pos0, ps(tS) = pos1, dps(t)dt t=0

= vel0, dps(t)dt t=tS
= vel1. To interpolate velocity,

also an 3rd order polynomial pv(t) is used, where pv(0) = vel0, pv(tS) = vel1, dpv(t)dt t=0
=

acc0, dpv(t)dt t=tS
= acc1. Torque is interpolated by linear function.

Note 2:Because the time of execution of motion blocks is varying in time, the block
uses one or two step prediction for interpolation depending on actual conditions and
timing of the motion blocks in slower tasks. The use of predicted values is signalized by
states RUN0, RUN1, RUN2.

Note 3: Control system REX orders the blocks primarily by flow of signal, secondarily
by name of block (ascendent in alphabetical order), so name like "zzz" is good choice
for the block RM_AxisOut. For checking the order, you can use RexView tool where the
blocks are sorted by execution order.

Input
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

530 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

Outputs
pos Commanded interpolated position [unit] double

vel Commanded interpolated velocity [unit/s] double

trq Commanded interpolated torque/force double

iState Interpolator state/error long

0 Off
1 Run0
2 Run1
3 Run2
5 Change1
-1 Change0
-2 Late
-3 Busy
-4 Slow

531

RM_Track – Tracking and inching

Block Symbol Licence: MOTION CONTROL

uAxis

posvel

TRACKP

TRACKV

JOGP

JOGN

yAxis

InTrack

CommandAborted

Busy

Active

Error

ErrorID

RM_Track

Function Description

The RM_Track block includes few useful functions.
If the input TRACK is active (not zero), the block tries to track requested position

(input pos) with respect to the limits for velocity, acceleration/decelertation and jerk.
The block expects that requested position is changed in each step and therefore recal-
culates the path in each step. This is difference to MC_MoveAbsolute block, which does
not allow to change target position while the movement is not finished. This mode is
useful if position is generated out of the motion control subsystem, even thought the
MC_PositionProfile block is better if whole path is known.

If the input JOGP is active (not zero), the block works like the MC_MoveVelocity

block (e.g. moves axis with velocity given by parameter pv in positive direction with
respect to maximum acceleration and jerk). When input JOGP is released (switched to
zero), the block activates stopping sequence and releases the axis when the sequence is
finished. This mode is useful for jogging (e.g. setting of position of axis by an operator
using up/down buttons).

Input JOGN works like JOGP, but direction is negative.
Note 1: This block hasn’t parameter BufferMode. Mode is always aborting.
Note 2: If more functions are selected, only the first one is activated. Order is TRACK,

JOGP, JOGN. Simultaneous activation of more than one function is not recommended.

Inputs
uAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

posvel Requested target position or velocity [unit] double

TRACKP Position tracking mode bool

TRACKV Velocity tracking mode bool

JOGP Moving positive direction mode bool

532 CHAPTER 16. MC_SINGLE – MOTION CONTROL - SINGLE AXIS BLOCKS

JOGN Moving negative direction mode bool

Parameters
pv Maximal allowed velocity [unit/s] double

pa Maximal allowed acceleration [unit/s2] double

pd Maximal allowed deceleration [unit/s2] double

pj Maximal allowed jerk [unit/s3] double

iLen Length of buffer for estimation �10 long

Outputs
yAxis Axis reference (only RM_Axis.axisRef–uAxis or yAxis–uAxis

connections are allowed)
reference

InTrack Requested position is reached bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

Chapter 17

MC_MULTI – Motion control -
multi axis blocks

Contents
MC_CamIn, MCP_CamIn – Engage the cam 534
MC_CamOut – Disengage the cam . 538
MCP_CamTableSelect – Cam definition 540
MC_CombineAxes, MCP_CombineAxes – Combine the motion of 2 axes
into a third axis . 542
MC_GearIn, MCP_GearIn – Engange the master/slave velocity ratio 545
MC_GearInPos, MCP_GearInPos – Engage the master/slave velocity
ratio in defined position . 548
MC_GearOut – Disengange the master/slave velocity ratio 553
MC_PhasingAbsolute, MCP_PhasingAbsolute – Phase shift in syn-
chronized motion (absolute coordinates) 555
MC_PhasingRelative, MCP_PhasingRelative – Phase shift in syn-
chronized motion (relative coordinates) 558

This block set is the second part of motion control blocks library according to the
PLCopen standard for multi axis control. General vendor specific rules are the same as
described in chapter 16 (the MC_SINGLE library, blocks for single axis motion control).

533

534 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

MC_CamIn, MCP_CamIn – Engage the cam

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampIn

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MC_CamIn

uMaster

uSlave

CamTableID

Execute

yMaster
ySlave
InSync

CommandAborted
Busy

Active
Error

ErrorID
EndOfProfile

SyncDistance

MCP_CamIn

Function Description

The MC_CamIn and MCP_CamIn blocks offer the same functionality, the only difference
is that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_CamIn block switches on a mode in which the slave axis is commanded
to position which corresponds to the position of master axis transformed with with
a function defined by the MCP_CamTableSelect block (connected to CamTableID in-
put). Denoting the transformation as Cam(x), master axis position PosM and slave
axis position PosS, we obtain (for absolute relationship, without phasing): PosS =
Cam((PosM −MasterOffset)/MasterScaling) ∗ SlaveScaling + SlaveOffset. This
form of synchronized motion of the slave axis is called electronic cam.

The cam mode is switched off by executing other motion block on slave axis with
mode aborting or by executing a MC_CamOut block. The cam mode is also finished when
the master axis leaves a non-periodic cam profile. This situation is indicated by the
EndOfProfile output.

In case of a difference between real position and/or velocity of slave axis and cam-
profile slave axis position and velocity, some transient trajectory must be generated to
cancel this offset. This mode is called ramp-in. The ramp-in function is added to the cam
profile to eliminate the difference in start position. The RampIn parametr is an average
velocity of the ramp-in function. Ramp-in path is not generated for RampIn=0 and error
-707 (position or velocity step) is invoked if some difference is detected. Recommended

535

value for the RampIn parametr is 0.1 to 0.5 of maximal slave axis velocity. The parameter
has to be lowered if maximal velocity or acceleration error is detected.

Inputs
uMaster Master axis reference reference

uSlave Slave axis reference reference

CamTableID Cam table reference (connect to MCP_CamTableSelect.CamTableID) reference

Execute The block is activated on rising edge bool

MasterOffset Offset in cam table on master side [unit] double

SlaveOffset Offset in cam table on slave side [unit] double

MasterScaling Overall scaling factor in cam table on master side double

SlaveScaling Overall scaling factor in cam table on slave side double

StartMode Select relative or absolute cam table long

1 Master relative
2 Slave relative
3 Both relative
4 Both absolute

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

RampIn RampIn factor (0 = RampIn mode not used); average additive velocity
(absolute value) during ramp-in process

double

Outputs
yMaster Master axis reference reference

ySlave Slave axis reference reference

InSync Slave axis reached the cam profile bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

536 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

EndOfProfile Indicate end of cam profile (not periodic cam only) bool

SyncDistance Position deviation of the slave axis from synchronized position double

537

Example

velocity2

1

mode2

2

mode1

1

execute2

[execute2]

execute1

[execute1]

execute0

[execute0]

direction2

1

deceleration2

0.2

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration2

1

SS

1

SO

0

SM

4

RF

0

MS

1

MO

0

MC_MoveVelocity − block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_CamIn − block 1

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MCP_CamTableSelect − block 0

uMaster

uSlave

Execute

yMaster

ySlave

Done

Busy

Error

ErrorID

CamTableID

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

bo
ol

Block 0 execute (CamTableSelect)
Block 1 execute (CamIn)
Block 2 execute (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

bo
ol

Block 1 active (CamIn)
Block 2 active (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

Acceleration

ac
ce

le
ra

tio
n

Acceleration axis 1 − master
Acceleration axis 2 − slave

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

Velocity

ve
lo

ci
ty

Velocity axis 1 − master
Velocity axis 2 − slave

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8
Position

po
si

tio
n

Position axis 1 − master
Position axis 2 − slave

538 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

MC_CamOut – Disengage the cam

Block Symbol Licence: MOTION CONTROL

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_CamOut

Function Description

The MC_CamOut block switches off the cam mode on slave axis. If cam mode is not
active, the block does nothing (no error is activated).

Inputs
uSlave Slave axis reference reference

Execute The block is activated on rising edge bool

Outputs
ySlave Slave axis reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

539

Example

velocity2

1

mode2

2

mode1

1

jerk4

0

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

execute0

[execute0]

direction2

1

deceleration4

10

deceleration2

0.2

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration2

1

SS1

4

SS

1

SO

0

RF

0

MS

1

MO

0

MC_Stop − block 4

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_MoveVelocity − block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_CamOut − block 3

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_CamIn block 1

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MCP_CamTableSelect − block 0

uMaster

uSlave

Execute

yMaster

ySlave

Done

Busy

Error

ErrorID

CamTableID

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

bo
ol

Block 0 execute (CamTableSelect)
Block 1 execute (CamIn)
Block 2 execute (MoveVelocity)
Block 3 execute (CamOut)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

bo
ol

Block 1 active (CamIn)
Block 2 active (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

Acceleration

ac
ce

le
ra

tio
n

Acceleration axis 1 − master
Acceleration axis 2 − slave

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

Velocity

ve
lo

ci
ty

Velocity axis 1 − master
Velocity axis 2 − slave

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8
Position

po
si

tio
n

Position axis 1 − master
Position axis 2 − slave

540 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

MCP_CamTableSelect – Cam definition

Block Symbol Licence: MOTION CONTROL

uMaster

uSlave

Execute

yMaster
ySlave
Done
Busy
Error

ErrorID
CamTableID

MCP_CamTableSelect

Function Description

The MCP_CamTableSelect block defines a cam profile. The definition is similar to
MC_PositionProfile block, but the time axis is replaced by master position axis. There
are also two possible ways for cam profile definition:

1. sequence of values: given sequence of master-slave position pairs. In each master
position interval, value of slave position is interpolated by 3rd-order polynomial (simple
linear interpolation would lead to steps in velocity at interval border). Master position
sequence is in array/parameter mvalues, slave position sequence is in array/parameter
svalues. Master position sequence must be increasing.

2. spline: master position sequence is the same as in previous case. Each interval is
interpolated by 5th-order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where

beginning of time-interval is defined for x = 0, end of time-interval holds for x = 1 and
factors ai are put in array/parameter svalues in ascending order (e.g. array/parameter
svalues contain 6 values for each interval). This method allows to reduce the number of
intervals and there is special graphical editor available for interpolating curve synthesis.

For both cases the master position sequence can be equidistantly spaced in time and
then the time array includes only first and last point.

Note 1: input CamTable which is defined in PLCOpen specification is missing, because
all path data are set in the parameters of the block.

Note 2: parameter svalues must be set as a vector in all cases, e.g. text string must
not include a semicolon.

Note 3: incorrect parameter value cSeg (higher then real size of arrays times and/or
values) can lead to unpredictable results and in some cases to crash of the whole runtime
execution (The problem is platform dependent and currently it is observed only for
SIMULINK version).

Inputs
uMaster Master axis reference reference

uSlave Slave axis reference reference

541

Execute The block is activated on rising edge bool

Outputs
yMaster Master axis reference reference

ySlave Slave axis reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
CamTableID Cam table reference (connect to MC_CamIn.CamTableID) reference

Parameters
alg Algorithm for interpolation �2 long

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

cSeg Number of profile segments �3 long

Periodic Indicate periodic cam profile �on bool

camname Filename of special editor data file (filename is generated by system
if parameter is empty)

string

mvalues Master positions where segments are switched �[0 30] double

svalues Slave positions or interpolating polynomial coefficients (a0, a1, a2, ...)
�[0 100 100 0]

double

542 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

MC_CombineAxes, MCP_CombineAxes – Combine the motion of 2
axes into a third axis

Block Symbols Licence: MOTION CONTROL

uMaster1

uMaster2

uSlave

Execute

GearRatioNumeratorM1

GearRatioDenominatorM1

GearRatioNumeratorM2

GearRatioDenominatorM2

BufferMode

RampIn

yMaster1

yMaster2

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MC_CombineAxes

uMaster1

uMaster2

uSlave

Execute

yMaster1
yMaster2

ySlave
InSync

CommandAborted
Busy

Active
Error

ErrorID
SyncDistance

MCP_CombineAxes

Function Description

The MC_CombineAxes block combines a motion of two master axes into a slave axis
command. The slave axis indicates synchronized motion state. Following relationship
holds:

SlavePosition = Master1Position · GearRatioNumeratorM1

GearRatioDenominatorM1
+

+ Master2Position · GearRatioNumeratorM2

GearRatioDenominatorM2

Negative number can be set in GearRatio... parameter to obtain the resulting slave
movement in form of difference of master axes positions.

Inputs
uMaster1 First master axis reference reference

uMaster2 Second master axis reference reference

uSlave Slave axis reference reference

Execute The block is activated on rising edge bool

GearRatioNumeratorM1 Numerator for the gear factor for master axis 1 long

GearRatioDenominatorM1 Denominator for the gear factor for master axis 1 long

GearRatioNumeratorM2 Numerator for the gear factor for master axis 2 long

GearRatioDenominatorM2 Denominator for the gear factor for master axis 2 long

543

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

RampIn RampIn factor (0 = RampIn mode not used) double

Outputs
yMaster1 First master axis reference reference

yMaster2 Second master axis reference reference

ySlave Slave axis reference reference

InSync Slave axis reached the cam profile bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error
SyncDistance Position deviation of the slave axis from synchronized position double

544 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

Example

axis_slave_gearin

[axis_slave_gearin]

axis_slave_camin

[axis_slave_camin]

axis_master_gearin

[axis_master_gearin]

axis_master_camin

[axis_master_camin]

axis_combineaxis

[axis_combineaxis]

MC_GearIn

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

MC_CombineAxes

uMaster1

uMaster2

uSlave

Execute

GearRatioNumeratorM1

GearRatioDenominatorM1

GearRatioNumeratorM2

GearRatioDenominatorM2

BufferMode

RampIn

yMaster1

yMaster2

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MC_CamIn

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Position

po
si

tio
n

Position − slave GearIn
Position − slave CamIn
Final position CombineAxis

545

MC_GearIn, MCP_GearIn – Engange the master/slave velocity
ratio

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

MC_GearIn

uMaster

uSlave

Execute

yMaster
ySlave
InGear

CommandAborted
Busy

Active
Error

ErrorID

MCP_GearIn

Function Description

The MC_GearIn and MCP_GearIn blocks offer the same functionality, the only differ-
ence is that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_GearIn block commands the slave axis motion in such a way that a pre-
set ratio between master and slave velocities is maintained. Considering the velocity of
master axis V elM and velocity of slave axis V elS, following relation holds (without phas-
ing): V elS = V elM ∗ RatioNumerator/RatioDenominator. Position and acceleration
is commanded to be consistent with velocity; position/distance ratio is also locked. This
mode of synchronized motion is called electronic gear.

The gear mode is switched off by executing other motion block on slave axis with
mode aborting or by executing a MC_GearIn block.

Similarly to the MC_CamIn block, ramp-in mode is activated if initial velocity of
slave axis is different from master axis and gearing ratio. Parameters Acceleration,
Deceleration, Jerk are used during ramp-in mode.

Inputs
uMaster Master axis reference reference

uSlave Slave axis reference reference

Execute The block is activated on rising edge bool

RatioNumerator Gear ratio Numerator long

546 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

RatioDenominator Gear ratio Denominator long

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

Outputs
yMaster Master axis reference reference

ySlave Slave axis reference reference

InGear Slave axis reached gearing ratio bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

547

Example

velocity2

30

ratio_numerator

2

ratio_denominator

1

position2

100

mode2

2

mode1

2

jerk1

0

execute2

[execute2]

execute1

[execute1]

direction2

2

deceleration2

20

deceleration1

10

axis_slave

[axis_slave]axis_master

[axis_master]

acceleration2

50

acceleration1

25

MC_MoveAbsolute − block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID MC_GearIn − block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6

0

0.5

1

Execute

bo
ol

Block 1 execute (GearIn)
Block 2 execute (MoveAbsolute)

0 1 2 3 4 5 6

0

0.5

1

Active

bo
ol

Block 1 active (GearIn)
Block 2 active (MoveAbsolute)

0 1 2 3 4 5 6
−50

0

50

100

Acceleration

ac
ce

le
ra

tio
n

Acceleration axis 1 − master
Acceleration axis 2 − slave

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70
Velocity

ve
lo

ci
ty

Velocity axis 1 − master
Velocity axis 2 − slave

0 1 2 3 4 5 6
0

50

100

150

200

Position

po
si

tio
n

Position axis 1 − master
Position axis 2 − slave

548 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

MC_GearInPos, MCP_GearInPos – Engage the master/slave ve-
locity ratio in defined position

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

MasterSyncPosition

SlaveSyncPosition

MasterStartDistance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

SyncMode

yMaster

ySlave

StartSync

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MC_GearInPos

uMaster

uSlave

Execute

yMaster
ySlave

StartSync
InSync

CommandAborted
Busy

Active
Error

ErrorID
SyncDistance

MCP_GearInPos

Function Description

The MC_GearInPos and MCP_GearInPos blocks offer the same functionality, the only
difference is that some of the inputs are available as parameters in the MCP_ version of
the block.

The functional block MC_GearInPos engages a synchronized motion of master and
slave axes in such a way that the ratio of velocities of both axes is maintained at a con-
stant value. Compared to MC_GearIn, also the master to slave position ratio is determined
in a given reference point, i.e. following relation holds:

SlavePosition− SlaveSyncPosition

MasterPosition−MasterSyncPosition
=

RatioNumerator

RatioDenominator
.

In case that the slave position does not fulfill this condition of synchronicity at the
moment of block activation (i.e. in an instant of positive edge of Execute input and
after execution of previous commands in buffered mode), synchronization procedure is

549

started and indicated by output StartSync. During this procedure, proper slave trajec-
tory which results in smooth synchronization of both axes is generated with respect to
actual master motion and slave limits for Velocity, Acceleration, Deceleration and Jerk
(these limits are not applied from the moment of successful synchronization). Parameter
setting MasterStartDistance=0 leads to immediate start of synchronization procedure
at the moment of block activation (by the Execute input). Otherwise, the synchroniza-
tion starts as soon as the master position enters the interval MasterSyncPosition ±
MasterStartDistance.

Notes:
1. The synchronization procedure uses two algorithms: I. The algorithm implemented
in MC_MoveAbsolute is recomputed in every time instant in such a way, that the end
velocity is set to actual velocity of master axis. II. The position, velocity and acceleration
is generated in the same manner as in the synchronized motion and a proper 5th order
interpolation polynomial is added to achieve smooth transition to the synchronized state.
The length of interpolation trajectory is computed in such a way that maximum velocity,
acceleration and jerk do not violate the specified limits (for the interpolation polynomial).
The first algorithm cannot be used for nonzero acceleration of the master axis whereas
the second does not guarantee the compliance of maximum limits for the overall slave
trajectory. Both algorithms are combined in a proper way to achieve the synchronized
motion of both axes.

2. The block parameters (execution of synchronization and velocity/acceleration lim-
its) have to be chosen so that the slave position is close to SlaveSyncPosition approx-
imately at the moment when the master position enters the range for synchronization
given by MasterSyncPosition and MasterStartDistance. Violation of this rule can
lead to unpredictable behaviour of the slave axis during the synchronization or to an
overrun of the specified limits for slave axis. However, the motion of both axes is usually
well defined and predictable in standard applications and correct synchronization can
be performed easily by proper configuration of motion commands and functional block
parameters.

Inputs
uMaster Master axis reference reference

uSlave Slave axis reference reference

Execute The block is activated on rising edge bool

RatioNumerator Gear ratio Numerator long

RatioDenominator Gear ratio Denominator long

MasterSyncPosition Master position for synchronization double

SlaveSyncPosition Slave position for synchronization double

MasterStartDistance Master distance for starting gear in procedure double

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

550 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

BufferMode Buffering mode long

1 Aborting (start immediately)
2 Buffered (start after finish of previous motion)
3 Blending low (start after finishing the previous motion,

previous motion finishes with the lowest velocity of both
commands)

4 Blending high (start after finishing the previous motion,
previous motion finishes with the lowest velocity of both
commands)

5 Blending previous (start after finishing the previous
motion, previous motion finishes with its final velocity)

6 Blending next (start after finishing the previous motion,
previous motion finishes with the starting velocity of the
next block)

SyncMode Synchronization mode (cyclic axes only) long

1 CatchUp
2 Shortest
3 SlowDown

Outputs
yMaster Master axis reference reference

ySlave Slave axis reference reference

StartSync Commanded gearing starts bool

InSync Slave axis reached the cam profile bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error
SyncDistance Position deviation of the slave axis from synchronized position double

551

Example

velocity3

30

velocity2

60

velocity1

30

syncMode

2

rationNumerator

2

ratioDenominator

1

position2

40

position1

100

mode3

1

mode2

1

execute3

[execute3]

execute2

[execute2]execute1

[execute1]

direction3

1

direction1

1 deceleration3

20

deceleration2

50

deceleration1

20

bufferMode1

1

axis_slave

[axis_slave]
axis_master1

[axis_master]

axis_master

[axis_master]

acceleration3

50

acceleration2

50

acceleration1

50

SSP

20

MSP

20

MSD

10

MC_MoveAbsolute − block 3

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID
MC_MoveAbsolute − block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GearInPos − block 2

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

MasterSyncPosition

SlaveSyncPosition

MasterStartDistance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

SyncMode

yMaster

ySlave

StartSync

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

552 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

0 5 10 15

0

0.5

1

Execute

bo
ol

Block 1 execute (MoveAbsolute1)
Block 2 execute (GearIn)
Block 3 execute (MoveAbsolute2)

0 5 10 15

0

0.5

1

Active

bo
ol

Block 1 active (MoveAbsolute1)
Block 2 active (GearIn)
Block 3 active (MoveAbsolute2)

0 5 10 15

0

0.5

1

InSync

bo
ol

Block 2 InSync (GearIn)

0 5 10 15

−100

−50

0

50

100

Acceleration

ac
ce

le
ra

tio
n

Acceleration axis 1 − master
Acceleration axis 2 − slave

0 5 10 15
−100

−50

0

50

100
Velocity

ve
lo

ci
ty

Velocity axis 1 − master
Velocity axis 2 − slave

0 5 10 15
0

50

100

150

200

Position

po
si

tio
n

Positon axis 1 − master
Position axis 2 − slave

553

MC_GearOut – Disengange the master/slave velocity ratio

Block Symbol Licence: MOTION CONTROL

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_GearOut

Function Description

The MC_GearOut block switches off the gearing mode on the slave axis. If gearing
mode is not active (no MC_GearIn block commands slave axis at this moment), block
does nothing (no error is activated).

Inputs
uSlave Slave axis reference reference

Execute The block is activated on rising edge bool

Outputs
ySlave Slave axis reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

554 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

Example

velocity2

30

ratio_numerator1

2

ratio_denominator1

1

position2

100

mode2

2

mode1

2

jerk3

0

jerk1

0

execute3

[execute2]

execute2

[execute2]

execute1

[execute1]

direction2

1

deceleration3

150

deceleration2

20

deceleration1

10

axis_slave

[axis_slave]axis_master

[axis_master]

acceleration2

50

acceleration1

25

MC_Stop_block 4

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_MoveAbsolute − block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GearOut − block 3

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_GearIn − block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6

0

0.5

1

Execute

bo
ol

Block 1 execute (GearIn)
Block 2 execute (MoveAbsolute)
Block 3 execute (GearOut)

0 1 2 3 4 5 6

0

0.5

1

Active

bo
ol

Block 1 active (GearIn)
Block 2 active (MoveAbsolute)

0 1 2 3 4 5 6
−150

−100

−50

0

50

100

Acceleration

ac
ce

le
ra

tio
n

Acceleration axis 1 − master
Acceleration axis 2 − slave

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70
Velocity

ve
lo

ci
ty

Velocity axis 1 − master
Velocity axis 2 − slave

0 1 2 3 4 5 6
0

50

100

150

200

Position

po
si

tio
n

Position axis 1 − master
Position axis 2 − slave

555

MC_PhasingAbsolute, MCP_PhasingAbsolute – Phase shift in syn-
chronized motion (absolute coordinates)

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_PhasingAbsolute

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_PhasingAbsolute

Function Description

The MC_PhasingAbsolute and MCP_PhasingAbsolute blocks offer the same func-
tionality, the only difference is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_PhasingAbsolute block introduces an additional phase shift in master-slave
relation defined by an electronic cam (MC_CamIn) or electronic gear (MC_GearIn). The
functionality of this command is very similar to MC_MoveSuperimposed (additive motion
from 0 to PhaseShift position with respect to maximum velocity acceleration and jerk).
The only difference is that the additive position/velocity/acceleration is added to master
axis reference position in the functional dependence defined by a cam or gear ratio for the
computation of slave motion instead of its direct summation with master axis movement.
The absolute value of final phase shift is specified by PhaseShift parameter.

Note: The motion command is analogous to rotation of a mechanical cam by angle
PhaseShift

Inputs
uMaster Master axis reference reference

uSlave Slave axis reference reference

Execute The block is activated on rising edge bool

PhaseShift Requested phase shift (distance on master axis) for cam double

556 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

BufferMode Buffering mode long

1 Aborting
2 Buffered

Outputs
yMaster Master axis reference reference

ySlave Slave axis reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

557

Example

velocity3

50

velocity2

30

ratio_numerator1

2

ratio_denominator1

1

position2

100

phase_shift3

25

mode3

2

mode2

2

mode1

2

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

direction2

1

deceleration3

60

deceleration2

20

deceleration1

10

axis_slave1

[axis_slave]
axis_slave

[axis_slave] axis_master1

[axis_master]

axis_master

[axis_master]

acceleration3

60

acceleration2

50

acceleration1

25
MC_PhasingAbsolute − block 3

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute − block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID MC_GearIn − block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6 7 8

0

0.5

1

Execute

bo
ol

Block 1 execute (GearIn)
Block 2 execute (MoveAbsolute)
Block 3 execute (PhasingAbsolute)

0 1 2 3 4 5 6 7 8

0

0.5

1

Active

bo
ol

Block 1 active (GearIn)
Block 2 active (MoveAbsolute)
Block 3 active (PhasingAbsolute)

0 1 2 3 4 5 6 7 8
−150

−100

−50

0

50

100

150
Acceleration

ac
ce

le
ra

tio
n

Acceleration axis 1 − master
Acceleration axis 2 − slave

0 1 2 3 4 5 6 7 8
0

50

100

150

200
Velocity

ve
lo

ci
ty

Velocity axis 1 − master
Velocity axis 2 − slave

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300
Position

po
si

tio
n

Position axis slave without phasing

Position axis slave with phasing

Position axis 1 − master
Position axis 2 − slave

558 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

MC_PhasingRelative, MCP_PhasingRelative – Phase shift in syn-
chronized motion (relative coordinates)

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_PhasingRelative

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy

Active
Error

ErrorID

MCP_PhasingRelative

Function Description

The MC_PhasingRelative and MCP_PhasingRelative blocks offer the same func-
tionality, the only difference is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_PhasingRelative introduces an additional phase shift in master-slave re-
lation defined by an electronic cam (MC_CamIn) or electronic gear (MC_GearIn). The
functionality of this command is very similar to MC_MoveSuperimposed (additive motion
from 0 to PhaseShift position with respect to maximum velocity acceleration and jerk).
The only difference is that the additive position/velocity/acceleration is added to master
axis reference position in the functional dependence defined by a cam or gear ratio for
the computation of slave motion instead of its direct summation with master axis move-
ment. The relative value of final phase shift with respect to previous value is specified
by PhaseShift parameter. Note: The motion command is analogous to rotation of a
mechanical cam by angle PhaseShift

Inputs
uMaster Master axis reference reference

uSlave Slave axis reference reference

Execute The block is activated on rising edge bool

PhaseShift Requested phase shift (distance on master axis) for cam double

559

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

BufferMode Buffering mode long

1 Aborting
2 Buffered

Outputs
yMaster Master axis reference reference

ySlave Slave axis reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

560 CHAPTER 17. MC_MULTI – MOTION CONTROL - MULTI AXIS BLOCKS

Chapter 18

MC_COORD – Motion control -
coordinated movement blocks

Contents
RM_AxesGroup – Axes group for coordinated motion control . . . 564
RM_Feed – ∗ MC Feeder ??? . 567
RM_Gcode – ∗ CNC motion control 568
MC_AddAxisToGroup – Adds one axis to a group 570
MC_UngroupAllAxes – Removes all axes from the group 571
MC_GroupEnable – Changes the state of a group to GroupEnable 572
MC_GroupDisable – Changes the state of a group to GroupDisabled573
MC_SetCartesianTransform – Sets Cartesian transformation 574
MC_ReadCartesianTransform – Reads the parameter of the carte-
sian transformation . 576
MC_GroupSetPosition, MCP_GroupSetPosition – Sets the position of
all axes in a group . 577
MC_GroupReadActualPosition – Read actual position in the se-
lected coordinate system . 579
MC_GroupReadActualVelocity – Read actual velocity in the se-
lected coordinate system . 580
MC_GroupReadActualAcceleration – Read actual acceleration in
the selected coordinate system . 581
MC_GroupStop – Stopping a group movement 582
MC_GroupHalt – Stopping a group movement (interruptible) . . . 585
MC_GroupInterrupt, MCP_GroupInterrupt – Read a group interrupt 590
MC_GroupContinue – Continuation of interrupted movement . . . 592
MC_GroupReadStatus – Read a group status 593
MC_GroupReadError – Read a group error 595
MC_GroupReset – Reset axes errors 596

561

562CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_MoveLinearAbsolute – Linear move to position (absolute coor-
dinates) . 597

MC_MoveLinearRelative – Linear move to position (relative to ex-
ecution point) . 601

MC_MoveCircularAbsolute – Circular move to position (absolute
coordinates) . 605

MC_MoveCircularRelative – Circular move to position (relative to
execution point) . 609

MC_MoveDirectAbsolute – Direct move to position (absolute coor-
dinates) . 613

MC_MoveDirectRelative – Direct move to position (relative to ex-
ecution point) . 616

MC_MovePath – General spatial trajectory generation 619

MC_GroupSetOverride – Set group override factors 621

563

564CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

RM_AxesGroup – Axes group for coordinated motion control

Block Symbol Licence: COORDINATED MOTION

uChain

refGroup
refPos
iState

ErrorID

RM_AxesGroup

Function Description

Note 1: Applicable for all non-administrative (moving) function blocks.
Note 2: In the states GroupErrorStop or GroupStopping, all Function Blocks canbe
called, although they will not be executed, except MC_GroupReset for GroupErrorStop
and any occurring Error– they will generate the transition to GroupStandby or GroupEr-
rorStop respectively
Note 3: MC_GroupStop.DONE AND NOT MC_GroupStop.EXECUTE
Note 4: Transition is applicable if last axis is removed from the group
Note 5: Transition is applicable while group is not empty.
Note 6: MC_GroupDisable and MC_UngroupAllAxes can be issued in all states and
will change the state to GroupDisabled.

Parameters
McsCount Number of axis in MCS ↓1 ↑6 �6 long

AcsCount Number of axis in ACS ↓1 ↑16 �6 long

PosCount Number of position axis ↓1 ↑6 �3 long

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Outputs
refGroup Axes group reference reference

refPos Position, velocity and acceleration vector reference

iState Group status long

0 Disabled
1 Standby
2 Homing
6 Moving
7 Stopping
8 Error stop

565

ErrorID Error code error

i REX general error

The State Diagram of AxesGroup

GroupMoving

GroupErrorStop

GroupStandby

GroupStopping

(Note 4)
MC_GroupDisable
MC_UngroupAllAxes
MC_RemoveAxisFromGroupMC_AddAxisToGroup

MC_RemoveAxisFromGroup
MC_UngroupAllAxes

Done

GroupDisabled

GroupHoming

MC_GroupEnable

MC_GroupHome

Note 1 and
MC_GroupHalt

MC_GroupStop

Done

Note 1

Erro
rN

ot
e

3

Note 2

Error

Note 2

M
C
_G

ro
up

S
to

p

M
C_G

roupStop

MC_GroupReset

(Note 5)
MC_AssAxisToGroup
MC_RemoveAxisFromGroup

Error

axes_group_reference

[axes_group]

VTOR2

uVec

y1
y2
y3
y4
y5
y6
y7
y8

VTOR1

uVec

y1
y2
y3
y4
y5
y6
y7
y8RM_AxesGroup

refGroup
refPos
iState

ErrorID

566CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

adding particalar axis to axesgroup

implementation of particular single axis

implementation of axes group

vel4

[actual_velocity4]

vel3

[actual_velocity3]

vel2

[actual_velocity2]

vel1

[actual_velocity1]

skupina_os

[axes_group]

reference_to_axis4

[axis4]

reference_to_axis3

[axis3]

reference_to_axis2

[axis22]

reference_to_axis1

[axis1]

reference_to_axesgroup

[axes_group]

pos4

[actual_position4]

pos3

[actual_position3]

pos2

[actual_position2]

pos1

[actual_position1]

commanded_vel4

[commanded_velocity4]

commanded_vel3

[commanded_velocity3]

commanded_vel2

[commanded_velocity2]

commanded_vel1

[commanded_velocity1]

commanded_tor4

[commanded_torque4]

commanded_tor3

[commanded_torque3]

commanded_tor2

[commanded_torque2]

commanded_tor1

[commanded_torque1]

commanded_pos4

[commanded_position4]

commanded_pos3

[commanded_position3]

commanded_pos2

[commanded_position2]

commanded_pos1

[commanded_position1]

axis4

[axis4]

axis3

[axis3]

axis2

[axis2]

axis1

[axis1]

RM_Axis4

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis3

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis2

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis1

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_AxesGroup1234

refGroup
refPos
iState

ErrorID

MC_Power4

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power3

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power2

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power1

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_GroupEnable_1234

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_AddAxisToGroup_O4

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O3

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O2

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O1

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MCP_SetKinTransform_Agebot

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

CNB3

on

CNB2

on

CNB1

on

CNB1

on

CNB

1

567

RM_Feed – ∗ MC Feeder ???

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

RM_Feed

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Parameters
Filename 0 string

VelFactor 0 ↓0.01 ↑100.0 �1.0 double

Relative 0 bool

CoordSystem 0 ↓1 ↑3 �2 long

BufferMode 0 ↓1 ↑6 �1 long

TransitionMode 0 ↓0 ↑15 �1 long

TransitionParameter 0 double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

Aux 0 double

568CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

RM_Gcode – ∗ CNC motion control

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

BlockSkip

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID
Cooling

MoveType
ExecutingLine
SpindleSpeed

RM_Gcode

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

BlockSkip MILAN bool

Parameters
BaseDir Directory of the G-code files string

MainFile Source file number long

CoordSystem 0 ↓1 ↑3 �3 long

BufferMode Buffering mode �1 long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode �1 long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

569

TransitionParameter Parametr for transition (depends on transition mode) double

workOffsets Sets with initial coordinate
�[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

double

toolOffsets Sets of tool offset �[0 0 0] double

cutterOffsets Tool radii �[0 0 0] double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error
Cooling Cooling bool

MoveType Command execution long

ExecutingLine Current line of G-code long

SpindleSpeed Spindle speed long

570CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_AddAxisToGroup – Adds one axis to a group

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup
yAxis
Done
Busy
Error

ErrorID

MC_AddAxisToGroup

Function Description

The function block MC_AddAxisToGroup adds one uAxis to the group in a structure
uAxesGroup. Axes Group is implemented by the function block RM_AxesGroup. The input
uAxis must be defined by the function block RM_Axis from the MC_SINGLE library.

Note 1: Every IdentInGroup is unique and can be used only for one time otherwise
the error is set.

Inputs
uAxesGroup Axes group reference reference

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

reference

Execute The block is activated on rising edge bool

IdentInGroup The order of axes in the group (0 = first unassigned) long

Outputs
yAxesGroup Axes group reference reference

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

571

MC_UngroupAllAxes – Removes all axes from the group

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_UngroupAllAxes

Function Description

The function block MC_UngroupAllAxes removes all axes from the group uAxesGroup.
After finalization the state is changed to "GroupDisabled".

Note 1: If the function block is execute in the group state "GroupDisabled", "Group-
StandBy" or "GroupErrorStop" the error is set and the block is not execute.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

572CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_GroupEnable – Changes the state of a group to GroupEn-
able

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_GroupEnable

Function Description

The function block MC_GroupEnable changes the state for the group uAxesGroup

from "GroupDisabled" to "GroupStandby".

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

573

MC_GroupDisable – Changes the state of a group to GroupDis-
abled

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_GroupDisable

Function Description

The function block MC_GroupDisable changes the state for the group uAxesGroup to
"GroupDisabled". If the axes are not standing still while issuing this command the state
of the group is changed to "Stopping". It is mean stopping with the maximal allowed
deceleration. When stopping is done the state of the group is changed to "GroupDis-
abled".

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

574CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_SetCartesianTransform – Sets Cartesian transformation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
TransX
TransY
TransZ
RotAngle1
RotAngle2
RotAngle3
Relative
SSF

yAxesGroup

Done

Busy

Error

ErrorID

MC_SetCartesianTransform

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

TransX X-component of translation vector double

TransY Y-component of translation vector double

TransZ Z-component of translation vector double

RotAngle1 Rotation angle component double

RotAngle2 Rotation angle component double

RotAngle3 Rotation angle component double

Relative Mode of position inputs bool

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

575

z’=z

x

x’

y’

y

y’’=y’

x’ x’’

z’z’’

x’’’=x’’

y’’

y’’’

z’’z’’’

y’’’

z’’’

x’’’

x

y

z

Trans

RotZ

RotY RotX

TransX

T
ra

n
s
Y

RotZ

576CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_ReadCartesianTransform – Reads the parameter of the carte-
sian transformation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

yAxesGroup
Valid
Busy

TransX
TransY
TransZ

RotAngle1
RotAngle2
RotAngle3

Error
ErrorID

MC_ReadCartesianTransform

Function Description

The function block MC_ReadCartesianTransform reads the parameter of the carte-
sian transformation that is active between the MCS and PCS. The parameters are valid
only if the output Valid is true which is achieved by setting the input Enable on true. If
more than one transformation is active, the resulting cartesian transformation is given.

Inputs
uAxesGroup Axes group reference reference

Enable Block function is enabled bool

Outputs
yAxesGroup Axes group reference reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

TransX X-component of translation vector double

TransY Y-component of translation vector double

TransZ Z-component of translation vector double

RotAngle1 Rotation angle component double

RotAngle2 Rotation angle component double

RotAngle3 Rotation angle component double

Error Error occurred bool

ErrorID Error code error

i REX general error

577

MC_GroupSetPosition, MCP_GroupSetPosition – Sets the posi-
tion of all axes in a group

Block Symbols Licence: COORDINATED MOTION

uAxesGroup

Execute

Position

Relative

CoordSystem

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MC_GroupSetPosition

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupSetPosition

Function Description
The MC_GroupSetPosition and MCP_GroupSetPosition blocks offer the same function-
ality, the only difference is that some of the inputs are available as parameters in the
MCP_ version of the block.

The function block MC_GroupSetPosition sets the position of all axes in the group
uAxesGroup without moving the axes. The new coordinates are described by the in-
put Position. With the coordinate system input CoordSystem the according coordinate
system is selected. The function block MC_GroupSetPosition shifts position of the ad-
dressed coordinate system and affect the higher level coordinate systems (so if ACS
selected, MCS and PCS are affected).

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Position Array of coordinates (positions and orientations) reference

Relative Mode of position inputs bool

off . . . absolute
on relative

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

578CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

CommandAborted Algorithm was aborted bool

Error Error occurred bool

ErrorID Error code error

i REX general error

579

MC_GroupReadActualPosition – Read actual position in the se-
lected coordinate system

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Position

MC_GroupReadActualPosition

Function Description

The function block MC_GroupReadActualPosition returns the actual position in the
selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs
uAxesGroup Axes group reference reference

Enable Block function is enabled bool

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

Outputs
yAxesGroup Axes group reference reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
Position xxx reference

580CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_GroupReadActualVelocity – Read actual velocity in the se-
lected coordinate system

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Velocity

MC_GroupReadActualVelocity

Function Description

The function block MC_GroupReadActualVelocity returns the actual velocity in the
selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs
uAxesGroup Axes group reference reference

Enable Block function is enabled bool

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

Outputs
yAxesGroup Axes group reference reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
Velocity xxx reference

581

MC_GroupReadActualAcceleration – Read actual acceleration
in the selected coordinate system

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Acceleration

MC_GroupReadActualAcceleration

Function Description

The function block MC_GroupReadActualAcceleration returns the actual velocity in
the selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs
uAxesGroup Axes group reference reference

Enable Block function is enabled bool

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

Outputs
yAxesGroup Axes group reference reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
Acceleration xxx reference

582CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_GroupStop – Stopping a group movement

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_GroupStop

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

583

velocity1

0.4

transition_parameter1

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z1

1

position y1

1.1

position x1

0.9

orientation_of_effector1

−1.5

execute2

[execute2]
execute1

[execute1]

deceleration

0.75

coord_system1

2

buffer_mode1

1

acceleration1

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute −
Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupStop

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

584CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

bo
ol

Execute − MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

bo
ol

Done − MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

bo
ol

Error − MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

bo
ol

Execute − MC_GroupStop

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

bo
ol

Done − MC_GroupStop

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

585

MC_GroupHalt – Stopping a group movement (interruptible)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_GroupHalt

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

586CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

velocity1

0.4

transition_parameter1

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z1

1

position y1

1.1

position x1

0.9

orientation_of_effector1

−1.5

execute2

[execute2]
execute1

[execute1]

deceleration

0.75

coord_system1

2

buffer_mode1

1

acceleration1

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute −
Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupHalt

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

587

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Execute − MC_MoveLinearAbsolute

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Done − MC_MoveLinearAbsolute

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Error − MC_MoveLinearAbsolute

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Execute − MC_GroupStop

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Done − MC_GroupStop

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

com. position x

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Execute − MC_MoveLinearAbsolute

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Done − MC_MoveLinearAbsolute

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Error − MC_MoveLinearAbsolute

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Execute − MC_GroupHalt

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

bo
ol

Done − MC_GroupHalt

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

com. position y

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

588CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

velocity2

0.4

velocity1

0.4

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z2

1

position z1

1

position y2

0.7

position y1

1.1

position x2

0.8

position x1

0.9

orientation_of_effector2

−1.5

orientation_of_effector1

−1.5

execute3

[execute3]

execute2

[execute2]
execute1

[execute1]

deceleration

0.75

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

1

acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute −
Function Block 2

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute −
Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupHalt

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

589

0 1 2 3 4 5 6

0

0.5

1

bo
ol

Execute − MC_MoveLinearAbsolute −− Function Block 1

0 1 2 3 4 5 6

0

0.5

1

bo
ol

Done − MC_MoveLinearAbsolute −− Function Block 1

0 1 2 3 4 5 6

0

0.5

1

bo
ol

Execute − MC_MoveLinearAbsolute −− Function Block 2

0 1 2 3 4 5 6

0

0.5

1

bo
ol

Done − MC_MoveLinearAbsolute −− Function Block 2

0 1 2 3 4 5 6

0

0.5

1

bo
ol

Execute − MC_GroupHalt

0 1 2 3 4 5 6

0

0.5

1

bo
ol

Execute − MC_GroupHalt

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

0 1 2 3 4 5 6

0.6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

590CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_GroupInterrupt, MCP_GroupInterrupt – Read a group inter-
rupt

Block Symbols Licence: COORDINATED MOTION

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MC_GroupInterrupt

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupInterrupt

Function Description

The MC_GroupInterrupt and MCP_GroupInterrupt blocks offer the same functional-
ity, the only difference is that some of the inputs are available as parameters in the MCP_

version of the block.

The function block MC_GroupInterrupt interrupts the on-going motion and stops
the group from moving, however does not abort the interrupted motion (meaning that
at the interrupted FB the output CommandAborted will not be Set, Busy is still high and
Active is reset). It stores all relevant track or path information internally at the moment
it becomes active. The uAxesGroup stays in the original state even if the velocity zero is
reached and the Done output is set.

Note 1: This function block is complementary to the function block MC_GroupContinue

which execution the uAxesGroup state is reset to the original state (before MC_GroupInterrupt
execution)

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Deceleration Maximal allowed deceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

CommandAborted Algorithm was aborted bool

Error Error occurred bool

591

ErrorID Error code error

i REX general error

592CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_GroupContinue – Continuation of interrupted movement

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MC_GroupContinue

Function Description

The function block MC_GroupContinue transfers the program back to the situa-
tion at issuing MC_GroupInterrupt. It uses internally the data set as stored at issuing
MC_GroupInterrupt, and at the end (output Done set) transfer the control on the group
back to the original FB doing the movements on the axes group, meaning also that at
the originally interrupted FB the output Busy is still high and the output Active is set
again.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

CommandAborted Algorithm was aborted bool

Error Error occurred bool

ErrorID Error code error

i REX general error

593

MC_GroupReadStatus – Read a group status

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

yAxesGroup
Valid
Busy

GroupMoving
GroupHoming

GroupErrorStop
GroupStandby

GroupStopping
GroupDisabled

ConstantVelocity
Accelerating
Decelerating

InPosition
Error

ErrorID

MC_GroupReadStatus

Function Description

The function block MC_GroupReadStatus returns the status of the uAxesGroup. The
status is valid only if the output Valid is true which is achieved by setting the input
Enable on true.

Inputs
uAxesGroup Axes group reference reference

Enable Block function is enabled bool

Outputs
yAxesGroup Axes group reference reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

GroupMoving State GroupMoving bool

GroupHoming State GroupHoming bool

GroupErrorStop State ErrorStop bool

GroupStandby State Standby bool

GroupStopping State Stopping bool

GroupDisabled State Disabled bool

ConstantVelocity Constant velocity motion bool

Accelerating Accelerating bool

Decelerating Decelerating bool

InPosition Symptom achieve the desired position bool

Error Error occurred bool

594CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

ErrorID Error code error

i REX general error

595

MC_GroupReadError – Read a group error

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

yAxesGroup
Valid
Busy
Error

ErrorID
GroupErrorID

MC_GroupReadError

Function Description

The function block MC_GroupReadError describes general error on the uAxesGroup

which is not relating to the function blocks. If the output GroupErrorID is equal to 0
there is no error on the axes group. The actual error code GroupErrorID is valid only if
the output Valid is true which is achieved by setting the input Enable on true.

Note 1: This function block is implemented because of compatibility with the PLCopen
norm. The same error value is on the output ErrorID of the function block RM_AxesGroup.

Inputs
uAxesGroup Axes group reference reference

Enable Block function is enabled bool

Outputs
yAxesGroup Axes group reference reference

Valid Output value is valid bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error
GroupErrorID Error code error

i REX general error

596CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_GroupReset – Reset axes errors

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_GroupReset

Function Description

The function block MC_GroupReset makes the transition from the state "GroupEr-
rorStop" to "GroupStandBy" by resetting all internal group-related errors. This func-
tion block also resets all axes in this group like the function block MC_Reset from the
MC_SINGLE library.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

597

MC_MoveLinearAbsolute – Linear move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Position Array of coordinates (positions and orientations) reference

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

598CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

BufferMode Buffering mode long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

velocity2

0.4velocity1

0.4

transition_parameter2

1transition_parameter1

1
transition_mode2

1transition_mode1

1

reference_to_axesgroup

[axes_group]

position z2

1position z1

1
position y2

0.8position y1

1
position x2

1.2position x1

1

orientation_of_effector2

−1.5orientation_of_effector1

−1.5

execute2

[execute2]execute1

[execute1]

coord_system2

2coord_system1

2

buffer_mode2

1buffer_mode1

1

acceleration2

1acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute −
Function Block 2

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute −
Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

599

600CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

1 1.5 2 2.5 3 3.5 4

0

0.5

1

bo
ol

Execute − MC_MoveLinearAbsolute −− Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

bo
ol

Active − MC_MoveLinearAbsolute −− Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

bo
ol

Done − MC_MoveLinearAbsolute −− Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

bo
ol

Execute − MC_MoveLinearAbsolute −− Function Block 2

1 1.5 2 2.5 3 3.5 4

0

0.5

1

bo
ol

Active − MC_MoveLinearAbsolute −− Function Block 2

1 1.5 2 2.5 3 3.5 4

0

0.5

1

bo
ol

Done − MC_MoveLinearAbsolute −− Function Block 2

1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

commanded position x,y

Cas [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

601

MC_MoveLinearRelative – Linear move to position (relative to
execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Distance

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearRelative

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Distance Array of coordinates (relative distances and orientations) reference

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

BufferMode Buffering mode long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

602CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

TransitionMode Transition mode in blending mode long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

velocity2

0.4velocity1

0.4

transition_parameter2

1transition_parameter1

1
transition_mode2

1transition_mode1

1

reference_to_axesgroup

[axes_group]

execute2

[execute2]execute1

[execute1]

distance_orientation_of_effector2

0distance_orientation_of_effector1

0
distance z2

0distance z1

0
distance y2

−0.2distance y1

0.2
distance x2

0.2distance x1

0.2

coord_system2

2coord_system1

2

buffer_mode2

1buffer_mode1

1

acceleration2

1acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearRelative −
Function Block 2

uAxesGroup

Execute

Distance

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearRelative −
Function Block 1

uAxesGroup

Execute

Distance

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

603

604CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Execute − MC_MoveLinearRelative −− Function Block 1
bo

ol

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Active − MC_MoveLinearRelative −− Function Block 1

bo
ol

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Done − MC_MoveLinearRelative −− Function Block 1

bo
ol

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Execute − MC_MoveLinearRelative −− Function Block 2

bo
ol

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Active − MC_MoveLinearRelative −− Function Block 2

bo
ol

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Done − MC_MoveLinearRelative −− Function Block 2

bo
ol

1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

Velocity AxesGroup

V
el

oc
ity

 [r
ad

/s
]

1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

commanded position x,y
x−axis
y−axis

605

MC_MoveCircularAbsolute – Circular move to position (abso-
lute coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularAbsolute

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Starting
point

Border
point

End
point

x

y

Starting
point

Center
point

End
point

x

y

Starting
point

End
point

x

y

Spearhead
point

length = Radious of the circle

CircMode = BORDER CircMode = CENTER CircMode = RADIUS

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

606CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

CircMode Specifies the meaning of the input signals AuxPoint and CircDirection long

1 BORDER
2 CENTER
3 RADIUS

AuxPoint Next coordinates to define circle (depend on CircMode) reference

EndPoint Target axes coordinates position reference

PathChoice Choice of path long

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

BufferMode Buffering mode long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

607

velocity2

0.5

velocity1

0.5

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_groupaxes

[axes_group]

position z2 − EndPoint

1

position z2 − AuxPoint

1

position z1 − EndPoint

1

position z1 − AuxPoint

1

position y2 − EndPoint

1.1

position y2 − AuxPoint

1.2

position y1 − EndPoint

1.1

position y1 − AuxPoint

1.1

position x2 − EndPoint

1.1

position x2 − AuxPoint

1

position x1 − EndPoint

0.9

position x1 − AuxPoint

0.7

orientation_of_effector2 − EndPoint

−1.5

orientation_of_effector2 − AuxPoint

−1.5

orientation_of_effector1 − EndPoint

−1.5

orientation_of_effector1 − AuxPoint

−1.5

execute2

[execute2]

execute1

[execute1]

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

0.5

acceleration1

0.5

RTOV4

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV3

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

PathChoice3

1

PathChoice1

1

MC_MoveCircularAbsolute −
Function Block 2

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularAbsolute −
Function Block 1

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

CircMode2

1

CircMode1

1

608CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Execute − MC_MoveCircularAbsolute −− Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Active − MC_MoveCircularAbsolute −− Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Done − MC_MoveCircularAbsolute −− Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Execute − MC_MoveCircularAbsolute −− Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Active − MC_MoveCircularAbsolute −− Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Done − MC_MoveCircularAbsolute −− Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6
−0.2

0

0.2

0.4

0.6

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

2 2.5 3 3.5 4 4.5 5 5.5 6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

609

MC_MoveCircularRelative – Circular move to position (relative
to execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularRelative

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Starting
point

Border
point

End
point

x

y

Starting
point

Center
point

End
point

x

y

Starting
point

End
point

x

y

Spearhead
point

length = Radious of the circle

CircMode = BORDER CircMode = CENTER CircMode = RADIUS

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

610CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

CircMode Specifies the meaning of the input signals AuxPoint and CircDirection long

1 BORDER
2 CENTER
3 RADIUS

AuxPoint Next coordinates to define circle (depend on CircMode) reference

EndPoint Target axes coordinates position reference

PathChoice Choice of path long

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] double

Acceleration Maximal allowed acceleration [unit/s2] double

Jerk Maximal allowed jerk [unit/s3] double

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

BufferMode Buffering mode long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

611

velocity2

0.5

velocity1

0.5

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_groupaxes

[axes_group]

execute2

[execute2]

execute1

[execute1]

distance_orientation_of_effector2 − EndPoint

0

distance_orientation_of_effector1 − EndPoint

0

distance z2 − EndPoint

0

distance z2 − AuxPoint

0

distance z1 − EndPoint

0

distance z1 − AuxPoint

0

distance y2 − EndPoint

−0.05

distance y2 − AuxPoint

0.05

distance y1 − EndPoint

−0.1

distance y1 − AuxPoint

−0.1

distance x2 − EndPoint

0.05

distance x2 − AuxPoint

0.05

distance x1 − EndPoint

0.1

distance x1 − AuxPoint

−0.1

dintance_orientation_of_effector2 − AuxPoint

0

dintance_orientation_of_effector1 − AuxPoint

0

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

0.5

acceleration1

0.5

RTOV4

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV3

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

PathChoice2

1

PathChoice1

1

MC_MoveCircularRelative −
Function Block 2

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularRelative −
Function Block 1

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

CircMode2

1

CircMode1

1

612CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Execute − MC_MoveCircularRelative −− Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Active − MC_MoveCircularRelative −− Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Done − MC_MoveCircularRelative −− Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Execute − MC_MoveCircularRelative −− Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Active − MC_MoveCircularRelative −− Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

bo
ol

Done − MC_MoveCircularRelative −− Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6
−0.2

0

0.2

0.4

0.6

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

2 2.5 3 3.5 4 4.5 5 5.5 6

0.8

1

1.2

commanded position y

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

613

MC_MoveDirectAbsolute – Direct move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Position

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveDirectAbsolute

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Position Array of coordinates (positions and orientations) reference

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

BufferMode Buffering mode long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

614CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

TransitionParameter Parametr for transition (depends on transition mode) double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

transition_parameter

1

transition_mode

1

reference_to_axesgroup

[group_axes]

position z

1

position y

0.6

position x

0.9

orientation_of_effector

−1.5

execute

[execute]

coord_system

2

buffer_mode

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveDirectAbsolute

uAxesGroup

Execute

Position

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

615

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

bo
ol

Execute − MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

bo
ol

Active − MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

bo
ol

Done − MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.8

1
commanded position x

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

616CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

MC_MoveDirectRelative – Direct move to position (relative to
execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Distance

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveDirectRelative

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

Distance Array of coordinates (relative distances and orientations) reference

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

BufferMode Buffering mode long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

617

TransitionParameter Parametr for transition (depends on transition mode) double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

transition_parameter

1

transition_mode

1

reference_to_axesgroup

[group_axes]

orientation_of_efector

0

execute

[execute]

distance z

0

distance y

−0.1

distance x

0.3

coord_system

2

buffer_mode

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveDirectRelative

uAxesGroup

Execute

Distance

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

618CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

bo
ol

Execute − MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

bo
ol

Active − MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

bo
ol

Done − MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

V
el

oc
ity

 [r
ad

/s
]

Velocity AxesGroup

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.8

1
commanded position x

commanded position y

Time [s]

P
os

iti
on

 [r
ad

]

Position AxesGroup

x−axis
y−axis

619

MC_MovePath – General spatial trajectory generation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

TotalTime

RampTime

CoordSystem

BufferMode

TransitionMode

TransitionParameter

RampIn

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MovePath

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Execute The block is activated on rising edge bool

TotalTime Time [s] for whole move double

RampTime Time [s] for acceleration/deceleration double

CoordSystem Reference to the coordinate system used long

1 ACS
2 MCS
3 PCS

BufferMode Buffering mode long

1 Aborting
2 Buffered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

620CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

TransitionMode Transition mode in blending mode long

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) double

RampIn RampIn factor (0 = RampIn mode not used) double

Parameters
pc Control-points matrix

�[0.0 1.0 2.0; 0.0 1.0 1.0; 0.0 1.0 0.0]

double

pk Knot-points vector �[0.0 0.0 0.0 0.0 0.5 1.0 1.0] double

pw Weighting vector �[1.0 1.0 1.0] double

pv Polynoms for feedrate definition
�[0.0 0.05 0.95; 0.0 0.1 0.1; 0.0 0.0 0.0; 0.1 0.0 -0.1; -0.05 0.0 0.05; 0.0 0.0 0.0]

double

pt Knot-points (time [s]) for feedrate �[0.0 1.0 10.0 11.0] double

user Only for special edit �[0.0 1.0 2.0 3.0] double

Outputs
yAxesGroup Axes group reference reference

Done Algorithm finished bool

CommandAborted Algorithm was aborted bool

Busy Algorithm not finished yet bool

Active The block is controlling the axis bool

Error Error occurred bool

ErrorID Error code error

i REX general error

621

MC_GroupSetOverride – Set group override factors

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Enable
VelFactor
AccFactor
JerkFactor

yAxesGroup
Enabled

Busy
Error

ErrorID

MC_GroupSetOverride

Function Description
The function block description is not yet available. Below you can find partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs
uAxesGroup Axes group reference reference

Enable Block function is enabled bool

VelFactor Velocity multiplication factor double

AccFactor Acceleration/deceleration multiplication factor double

JerkFactor Jerk multiplication factor double

Parameter
diff Deadband (difference for recalculation) �0.05 double

Outputs
yAxesGroup Axes group reference reference

Enabled Signal that the override faktor are set successfully bool

Busy Algorithm not finished yet bool

Error Error occurred bool

ErrorID Error code error

i REX general error

622CHAPTER 18. MC_COORD – MOTION CONTROL - COORDINATED MOVEMENT BLOCKS

Appendix A

Licensing options

From the licensing point of view, there are several versions of the RexCore runtime module
to provide maximum flexibility for individual projects. The table below compares the
individual variants.

The function blocks are divided into several licensing groups. The STANDARD func-
tion blocks are always available, the other groups require activation by a corresponding
licence.

RexCore RexCore RexCore RexCore RexCore
DEMO Starter Plus Professional Ultimate

Function blocks
STANDARD • • • • •
ADVANCED • – • • •
REXLANG • – • • •
MOTION CONTROL • – ◦ ◦ •
COORDINATED MOTION • – ◦ ◦ •
AUTOTUNING – – ◦ ◦ •
MATRIX • – ◦ ◦ •

I/O drivers
Basic I/O drivers • • • • •
Additional I/O drivers • ◦ ◦ • •

(• . . . included, ◦ . . . optional, – . . . not available)

See Appendix B for details about licensing of individual function blocks.

623

624 APPENDIX A. LICENSING OPTIONS

Appendix B

Licensing of individual function
blocks

To maximize flexibility for individual projects, function blocks of the REX system are
divided into several licensing groups. The table below shows the groups the function
blocks belong to. See Appendix A for detailed information about the individual licensing
options.

Function block name Licensing group
STANDARD Other

ABS_ •
ABSROT ADVANCED
ACD •
ADD •
ADDHEXD •
ADDOCT •
ADDQUAD •
AFLUSH •
ALB •
ALBI •
ALN •
ALNI •
AND_ •
ANDHEXD •
ANDOCT •
ANDQUAD •
ANLS •
ARC •
ARLY •
ASW ADVANCED

The list continues on the next page...

625

626 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

ATMT •
AVG •
AVS ADVANCED
BDHEXD •
BDOCT •
BINS •
BIS •
BITOP •
BMHEXD •
BMOCT •
BPF •
CDELSSM ADVANCED
CMP •
CNA •
CNB •
CNDR •
CNE •
CNI •
CNR •
CNS •
CONCAT •
COUNT •
CSSM ADVANCED
DATE_ •
DATETIME •
DDELSSM ADVANCED
DEL •
DELM •
DER •
DIF_ •
Display •
DIV •
DSSM ADVANCED
EAS •
EATMT ADVANCED
EDGE_ •
EMD •
EPC ADVANCED
EVAR •

The list continues on the next page...

627

Function block name Licensing group
STANDARD Other

EXEC •
FIND •
FLCU ADVANCED
FNX •
FNXY •
FOPDT •
FRID ADVANCED
From •
GAIN •
GETPA •
GETPB •
GETPI •
GETPR •
GETPS •
Goto •
GotoTagVisibility •
GRADS ADVANCED
HMI •
HTTP ADVANCED
HTTP2 ADVANCED
I3PM ADVANCED
IADD •
IDIV •
IMOD •
IMUL •
INFO •
INHEXD •
INOCT •
Inport •
INQUAD •
INSTD •
INTE •
INTSM •
IODRV •
IOTASK •
ISSW •
ISUB •
ITOI •
ITOS •

The list continues on the next page...

628 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

KDER ADVANCED
LC •
LEN •
LIN •
LLC •
LPBRK •
LPF •
MC_AccelerationProfile MOTION CONTROL
MC_AddAxisToGroup COORDINATED MOTION
MC_CamIn MOTION CONTROL
MC_CamOut MOTION CONTROL
MC_CombineAxes MOTION CONTROL
MC_GearIn MOTION CONTROL
MC_GearInPos MOTION CONTROL
MC_GearOut MOTION CONTROL
MC_GroupContinue COORDINATED MOTION
MC_GroupDisable COORDINATED MOTION
MC_GroupEnable COORDINATED MOTION
MC_GroupHalt COORDINATED MOTION
MC_GroupInterrupt COORDINATED MOTION
MC_GroupReadActualAcceleration COORDINATED MOTION
MC_GroupReadActualPosition COORDINATED MOTION
MC_GroupReadActualVelocity COORDINATED MOTION
MC_GroupReadError COORDINATED MOTION
MC_GroupReadStatus COORDINATED MOTION
MC_GroupReset COORDINATED MOTION
MC_GroupSetOverride COORDINATED MOTION
MC_GroupSetPosition COORDINATED MOTION
MC_GroupStop COORDINATED MOTION
MC_Halt MOTION CONTROL
MC_HaltSuperimposed MOTION CONTROL
MC_Home MOTION CONTROL
MC_MoveAbsolute MOTION CONTROL
MC_MoveAdditive MOTION CONTROL
MC_MoveCircularAbsolute COORDINATED MOTION
MC_MoveCircularRelative COORDINATED MOTION
MC_MoveContinuousAbsolute MOTION CONTROL
MC_MoveContinuousRelative MOTION CONTROL
MC_MoveDirectAbsolute COORDINATED MOTION

The list continues on the next page...

629

Function block name Licensing group
STANDARD Other

MC_MoveDirectRelative COORDINATED MOTION
MC_MoveLinearAbsolute COORDINATED MOTION
MC_MoveLinearRelative COORDINATED MOTION
MC_MovePath COORDINATED MOTION
MC_MovePath_PH COORDINATED MOTION
MC_MoveRelative MOTION CONTROL
MC_MoveSuperimposed MOTION CONTROL
MC_MoveVelocity MOTION CONTROL
MC_PhasingAbsolute MOTION CONTROL
MC_PhasingRelative MOTION CONTROL
MC_PositionProfile MOTION CONTROL
MC_Power MOTION CONTROL
MC_ReadActualPosition MOTION CONTROL
MC_ReadAxisError MOTION CONTROL
MC_ReadBoolParameter MOTION CONTROL
MC_ReadCartesianTransform COORDINATED MOTION
MC_ReadParameter MOTION CONTROL
MC_ReadStatus MOTION CONTROL
MC_Reset MOTION CONTROL
MC_SetCartesianTransform COORDINATED MOTION
MC_SetOverride MOTION CONTROL
MC_Stop MOTION CONTROL
MC_TorqueControl MOTION CONTROL
MC_UngroupAllAxes COORDINATED MOTION
MC_VelocityProfile MOTION CONTROL
MC_WriteBoolParameter MOTION CONTROL
MC_WriteParameter MOTION CONTROL
MCP_AccelerationProfile MOTION CONTROL
MCP_CamIn MOTION CONTROL
MCP_CamTableSelect MOTION CONTROL
MCP_CombineAxes MOTION CONTROL
MCP_GearIn MOTION CONTROL
MCP_GearInPos MOTION CONTROL
MCP_GroupHalt COORDINATED MOTION
MCP_GroupInterrupt COORDINATED MOTION
MCP_GroupSetOverride COORDINATED MOTION
MCP_GroupSetPosition COORDINATED MOTION
MCP_GroupStop COORDINATED MOTION
MCP_Halt MOTION CONTROL

The list continues on the next page...

630 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

MCP_HaltSuperimposed MOTION CONTROL
MCP_Home MOTION CONTROL
MCP_MoveAbsolute MOTION CONTROL
MCP_MoveAdditive MOTION CONTROL
MCP_MoveCircularAbsolute COORDINATED MOTION
MCP_MoveCircularRelative COORDINATED MOTION
MCP_MoveContinuousAbsolute MOTION CONTROL
MCP_MoveContinuousRelative MOTION CONTROL
MCP_MoveDirectAbsolute COORDINATED MOTION
MCP_MoveDirectRelative COORDINATED MOTION
MCP_MoveLinearAbsolute COORDINATED MOTION
MCP_MoveLinearRelative COORDINATED MOTION
MCP_MovePath COORDINATED MOTION
MCP_MovePath_PH COORDINATED MOTION
MCP_MoveRelative MOTION CONTROL
MCP_MoveSuperimposed MOTION CONTROL
MCP_MoveVelocity MOTION CONTROL
MCP_PhasingAbsolute MOTION CONTROL
MCP_PhasingRelative MOTION CONTROL
MCP_PositionProfile MOTION CONTROL
MCP_SetCartesianTransform COORDINATED MOTION
MCP_SetKinTransform_Arm COORDINATED MOTION
MCP_SetOverride MOTION CONTROL
MCP_Stop MOTION CONTROL
MCP_TorqueControl MOTION CONTROL
MCP_VelocityProfile MOTION CONTROL
MCU •
MDL •
MDLI •
MID •
MINMAX •
MODULE •
MP •
MUL •
MVD •
NOT_ •
NSCL •
OR_ •
ORHEXD •

The list continues on the next page...

631

Function block name Licensing group
STANDARD Other

OROCT •
ORQUAD •
OSCALL •
OUTHEXD •
OUTOCT •
Outport •
OUTQUAD •
OUTRHEXD ADVANCED
OUTROCT ADVANCED
OUTRQUAD ADVANCED
OUTRSTD ADVANCED
OUTSTD •
PARA •
PARB •
PARI •
PARR •
PARS •
PIDAT AUTOTUNING
PIDE ADVANCED
PIDGS ADVANCED
PIDMA AUTOTUNING
PIDU •
PIDUI ADVANCED
PJROCT •
PJSOCT •
POL •
POUT •
PRBS •
PRGM •
PROJECT •
PSMPC ADVANCED
PWM •
QFC ADVANCED
QFD ADVANCED
QTASK •
RDC ADVANCED
REC •
REGEXP ADVANCED
REL •

The list continues on the next page...

632 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

REPLACE •
REXLANG REXLANG
RLIM •
RLY •
RM_AxesGroup COORDINATED MOTION
RM_Axis MOTION CONTROL
RM_AxisOut MOTION CONTROL
RM_AxisSpline MOTION CONTROL
RM_Feed COORDINATED MOTION
RM_Gcode COORDINATED MOTION
RM_GroupTrack COORDINATED MOTION
RM_Track MOTION CONTROL
RS •
RTOI •
RTOS •
RTOV •
S1OF2 ADVANCED
SAI ADVANCED
SAT •
SC2FA AUTOTUNING
SCU •
SCUV •
SEL •
SELHEXD •
SELOCT •
SELQUAD •
SELSOCT •
SELU •
SETPA •
SETPB •
SETPI •
SETPR •
SETPS •
SG •
SGI •
SGSLP ADVANCED
SHIFTOCT •
SHLD •
SILO •

The list continues on the next page...

633

Function block name Licensing group
STANDARD Other

SILOS •
SINT •
SLEEP •
SMHCC ADVANCED
SMHCCA AUTOTUNING
SMTP ADVANCED
SOPDT •
SPIKE ADVANCED
SQR •
SQRT_ •
SR •
SRTF ADVANCED
SSW •
STOR •
SUB •
SubSystem •
SWR •
SWU •
SWVMR •
TASK •
TIME •
TIMER_ •
TIODRV •
TRND •
TRNDV •
TSE •
VDEL •
VIN ADVANCED
VOUT ADVANCED
VTOR •
WSCH •
WWW •
ZV4IS ADVANCED

634 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Appendix C

Error codes of the REX Control
System

Success codes
0 Success
-1 False
-2 First value is greater
-3 Second value is greater
-4 Parameter changed
-5 Success, no server transaction done
-6 Value too big
-7 Value too small
-8 Operation in progress
-9 REX I/O driver warning
-10 No more archive items
-11 Object is array
-12 Closed
-13 End of file

General failure codes
-100 Not enough memory
-101 Assertion failure
-102 Timeout
-103 General input variable error
-104 Invalid configuration version
-105 Not implemented
-106 Invalid parameter
-107 COM/OLE error
-108 REX Module error - some driver or block is not installed or licensed
-109 REX I/O driver error

635

636 APPENDIX C. ERROR CODES OF THE REX CONTROL SYSTEM

-110 Task creation error
-111 Operating system call error
-112 Invalid operating system version
-113 Access denied by operating system
-114 Block period has not been set
-115 Initialization failed
-116 REX configuration is being changed
-117 Invalid target device
-118 Access denied by REX security mechanism
-119 Block or object is not installed or licensed
-120 Checksum mismatch
-121 Object already exists
-122 Object doesn’t exist
-123 System user doesn’t belong to any REX group
-124 Password mismatch
-125 Bad user name or password
-126 Target device is not compatible
-127 Resource is locked by another module and can not be used
-128 String is not valid in UTF8 codepage

Class registration, symbol and validation error codes
-200 Class not registered
-201 Class already registered
-202 Not enough space for registry
-203 Registry index out of range
-204 Invalid context
-205 Invalid identifier
-206 Invalid input flag
-207 Invalid input mask
-208 Invalid object type
-209 Invalid variable type
-210 Invalid object workspace
-211 Symbol not found
-212 Symbol is ambiguous
-213 Range check error
-214 Not enough search space
-215 Write to read-only variable denied
-216 Data not ready
-217 Value out of range
-218 Input connection error
-219 Loop of type UNKNOWN detected
-220 REXLANG compilation error

637

Stream and file system codes
-300 Stream overflow
-301 Stream underflow
-302 Stream send error
-303 Stream receive error
-304 Stream download error
-305 Stream upload error
-306 File creation error
-307 File open error
-308 File close error
-309 File read error
-310 File write error
-311 Invalid format
-312 Unable to compress files
-313 Unable to extract files

Communication errors
-400 Network communication failure
-401 Communication already initialized
-402 Communication finished successfully
-403 Communicaton closed unexpectedly
-404 Unknown command
-405 Unexpected command
-406 Communicaton closed unexpectedly, probably ’Too many clients’
-407 Communication timeout
-408 Target device not found
-409 Link failed
-410 REX configuration has been changed
-411 REX executive is being terminated
-412 REX executive was terminated
-413 Connection refused
-414 Target device is unreachable
-415 Unable to resolve target in DNS
-416 Error reading from socket
-417 Error writing to socket
-418 Invalid operation on socket
-419 Reserved for socket 1
-420 Reserved for socket 2
-421 Reserved for socket 3
-422 Reserved for socket 4
-423 Reserved for socket 5
-424 Unable to create SSL context
-425 Unable to load certificate

638 APPENDIX C. ERROR CODES OF THE REX CONTROL SYSTEM

-426 SSL handshake error
-427 Certificate verification error
-428 Reserved for SSL 2
-429 Reserved for SSL 3
-430 Reserved for SSL 4
-431 Reserved for SSL 5
-432 Relay rejected
-433 STARTTLS rejected
-434 Authentication method rejected
-435 Authentication failed
-436 Send operation failed
-437 Receive operation failed
-438 Communication command failed
-439 Receiving buffer too small
-440 Sending buffer too small
-441 Invalid header
-442 HTTP server responded with error
-443 HTTP server responded with redirect
-444 Operation would blok
-445 Invalid operation
-446 Communication closed
-447 Connection cancelled

Numerical error codes
-500 General numeric error
-501 Division by zero
-502 Numeric stack overflow
-503 Invalid numeric instruction
-504 Invalid numeric address
-505 Invalid numeric type
-506 Not initialized numeric value
-507 Numeric argument overflow/underflow
-508 Numeric range check error
-509 Invalid subvector/submatrix range
-510 Numeric value too close to zero

Archive system codes
-600 Archive seek underflow
-601 Archive semaphore fatal error
-602 Archive cleared
-603 Archive reconstructed from saved vars
-604 Archive reconstructed from normal vars
-605 Archive check summ error
-606 Archive integrity error

639

-607 Archive sizes changed
-608 Maximum size of disk archive file exceeded

Motion control codes
-700 MC - Invalid parameter
-701 MC - Out of range
-702 MC - Position not reachable
-703 MC - Invalid axis state
-704 MC - Torque limit exceeded
-705 MC - Time limit exceeded
-706 MC - Distance limit exceeded
-707 MC - Step change in position or velocity
-708 MC - Base axis error or invalid state
-709 MC - Stopped by HALT input
-710 MC - Stopped by POSITION limit
-711 MC - Stopped by VELOCITY limit
-712 MC - Stopped by ACCELERATION limit
-713 MC - Stopped by LIMITSWITCH
-714 MC - Stopped by position LAG
-715 MC - Axis disabled during motion
-716 MC - Transition failed
-717 MC - Not used
-718 MC - Not used
-719 MC - Not used
-720 MC - General failure
-721 MC - Not implemented
-722 MC - Command is aborted
-723 MC - Conflict in block and axis periods
-724 MC - Busy, waiting for activation

Licensing codes
-800 Unable to identify Ethernet interface
-801 Unable to identify CPU
-802 Unable to identify HDD
-803 Invalid device code
-804 Invalid licensing key
-805 Not licensed

Webserver-related errors
-900 Web request too large
-901 Web reply too large
-902 Invalid format
-903 Invalid parameter

640 APPENDIX C. ERROR CODES OF THE REX CONTROL SYSTEM

RexVision-related errors
-1000 . . . Result is not evaluated
-1001 . . . The searched object/pattern can not be found
-1002 . . . The search criterion returned more corresponding objects

FMI standard related errors
-1100 . . . FMI Context allocation failure
-1101 . . . Invalid FMU version
-1102 . . . FMI XML parsing error
-1103 . . . FMI Model Exchange kind required
-1104 . . . FMI Co-Simulation kind required
-1105 . . . Could not create FMU loading mechanism
-1106 . . . Instantiation of FMU failed
-1107 . . . Termination of FMU failed
-1108 . . . FMU reset failed
-1109 . . . FMU Experiment setup failed
-1110 . . . Entering FMU initialization mode failed
-1111 . . . Exiting FMU initialization mode failed
-1112 . . . Error getting FMU variable list
-1113 . . . Error getting FMU real variable
-1114 . . . Error setting FMU real variable
-1115 . . . Error getting FMU integer variable
-1116 . . . Error setting FMU integer variable
-1117 . . . Error getting FMU boolean variable
-1118 . . . Error setting FMU boolean variable
-1119 . . . Doing a FMU simulation step failed
-1120 . . . FMU has too many inputs
-1121 . . . FMU has too many ouputs
-1122 . . . FMU has too many parameters

Bibliography

[1] OPC Foundation. Data Access Custom Interface Specification Version 3.00. OPC
Foundation, P.O. Box 140524, Austin, Texas, USA, 2003.

[2] REX Controls s.r.o.. REX control system – Quick reference guide, 2003.

[3] Simulink reference, version 6. The Mathworks, 3 Apple Hill Drive, Natick, MA, USA,
2006.

[4] Schlegel Miloš. Fuzzy controller: a tutorial. www.rexcontrols.com.

[5] Miloš Schlegel, Pavel Balda, and Milan Štětina. Robust PID autotuner: method of
moments. Automatizace, 46(4):242–246, 2003.

[6] M. Schlegel and P. Balda. Diskretizace spojitého lineárního systému (in Czech).
Automatizace, 11, 1987.

[7] BLAS 3.6.0. – netlib.org. Basic Linear Algebra Subprograms Version 3.6.0, 2016.

[8] LAPACK 3.6.0 – netlib.org. Linear Algebra PACKage Version 3.6.0, 2016.

[9] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

641

642 BIBLIOGRAPHY

Index

TODO
SRTF DLOG, 36
X, 107, 113, 114, 116, 117, 146, 150,

341–343, 346

ABS_, 65, 625
absolute

position sensor, 103
absolute value, 65
ABSROT, 103, 625
ACD, 277, 625
ADD, 66, 67, 625
ADDHEXD, 67, 625
addition, 66

extended, 74
integer, 83

ADDOCT, 66, 67, 99, 625
ADDQUAD, 67, 625
AFLUSH, 287, 625
alarm

Boolean value, 273
numerical value, 275

ALB, 273, 625
ALBI, 273, 625
algebraic loop, 30
ALN, 275, 625
ALNI, 275, 625
analog input

safety, 131
AND_, 236, 237, 625
ANDHEXD, 237, 625
ANDOCT, 236, 237, 625
ANDQUAD, 237, 625
ANLS, 152, 625
application

of the REX Control System, 22

ARC, 20, 23, 274, 276, 278, 281, 283, 287,
625

architecture
open, 31

archiv, 272
archive, 20

backed-up memory, 272
configuration, 20
disk, 272
RAM memory, 272

archiving
delta criterion, 277

ARLY, 165, 625
ASW, 105, 625
ATMT, 14, 238, 246, 308, 317, 321, 626
automaton

finite-state, 238, 246
average

moving, 107
AVG, 107, 626
AVS, 14, 108, 626

band
frequency transmission, 109

band-pass filter, 109
bandwidth, 122
BDHEXD, 241, 246, 626
BDOCT, 241, 246, 626
Bessel filter, 122
binary number

transformation, 253
binary sequence

generator, 154, 156
BINS, 154, 626
BIS, 154, 156, 157, 626
BITOP, 242, 626

643

644 INDEX

block
description, 15
description format, 15
execution, 35
inputs, 15
mathematic, 14
matrix, 14
modeling, 14
outputs, 15
parameters, 15
symbol, 15
vector, 14

blocks
analog signal processing, 14
data archiving, 14
generators, 14
input-output, 13
logic control, 14
parameter-related, 14
regulation, 14
special, 15

BMHEXD, 243, 246, 626
BMOCT, 243, 246, 626
Boolean complementation, 255
BPF, 109, 626
Butterworth filter, 122

CDELSSM, 328, 626
circuit

flip-flop Reset-Set, 258
flip-flop Set-Reset, 259

CMP, 110, 626
CNA, 349, 626
CNB, 68, 626
CNDR, 111, 626
CNE, 69, 626
CNI, 70, 626
CNR, 71, 626
CNS, 290, 626
coefficient

relative damping, 109, 122
comparator, 110
compatibility

REX and Simulink, 30

compensator
lead, 173
lead-lag, 174
nonlinearity, 111
simple nonlinearity, 124

compiler
RexComp, 22, 30

compression, 277
CONCAT, 291, 626
conditioner

nonlinear, 111
configuration

archives, 22
computation task, 22
input-output drivers, 22
modules, 22
REX Control System, 22

constant
Boolean, 68
integer, 70
logic, 68
real, 71

control
motion, 15
sequential, 238, 246

control unit
manual, 175

controller
fuzzy logic, 166
PID, 190
PID with gain scheduling, 182
PID with input-defined parameters, 193
PID with relay autotuner, 177
PID with static error, 180
step, 213, 216
with frequency autotuner, 207

conversion
real to integer, 96

COUNT, 17, 244, 626
counter

controlled, 244
CSSM, 331, 626

data

INDEX 645

remote connection, 437
data storing, 279, 282
data types, 16
DATE_, 264, 265, 626
DATETIME, 264, 265, 268, 626
DDELSSM, 333, 626
dead time, 341, 345
DEL, 113, 626
delay

transport, 114
variable, 146
with initialization, 113

DELM, 114, 626
delta criterion, 277
demultiplexer

bitwise, 241
denominator, 75
DER, 115, 626
derivation, 115, 120
detection

edge, 249
deviation

standard, 117
DIF_, 72, 626
difference, 72
Display, 44, 626
DIV, 73, 626
division

extended, 75
integer, 89, 90
remainder, 90
two signals, 73

DLL library, 31
driver

.rio file extension, 27
configuration data, 27
input-output, 13
input/output, 27
input/output with tasks, 40
REX Control System, 27
user manual, 29

drivers
REX system, 13

DSSM, 335, 626

EAS, 74, 626
EATMT, 246, 626
edge detection, 249
EDGE_, 138, 249, 626
element

three state, 234
EMD, 75, 626
EPC, 37, 428, 626
error

fatal, 33
EVAR, 117, 626
EXEC, 20, 22, 27–29, 31, 33, 34, 38–41, 627
executive

configuration, 13, 19
real-time, 22
RexCore program, 13

external program, 428

feedback loop, 30
filter

band-pass, 109
Bessel, 122
Butterworth, 122
low-pass, 122
moving average, 107
nonlinear, 142
spike, 142

filtering, 115, 120
digital, 33

FIND, 292, 627
finite-state machine, 238, 246
first order system, 345
FLCU, 14, 166, 627
flip-flop circuit

Reset-Set, 258
Set-Reset, 259

FMUCS, 337
FMUINFO, 340
FNX, 76, 627
FNXY, 78, 627
FOPDT, 174, 345
FOPDT, 341, 627
frequency transmission band, 109
FRID, 169, 627

646 INDEX

From, 45, 48, 49, 627
function

operating system, 37
single variable, 76
two variables, 78

fuzzy logic, 166

GAIN, 80, 627
gain, 80
generator

binary sequence, 154, 156
piecewise linear function, 152
signal, 160
time function, 196

GETPA, 306, 627
GETPB, 308, 627
GETPI, 308, 627
GETPR, 308, 321, 627
GETPS, 310, 627
Goto, 45–47, 49, 627
GotoTagVisibility, 48, 49, 627
GRADS, 81, 627

HMI, 24, 627
HTTP, 431, 627
HTTP2, 433, 627
hysteresis, 110

I3PM, 171, 627
IADD, 83, 627
identification

three parameter model, 171
IDIV, 89, 627
IMOD, 90, 627
IMUL, 87, 627
INFO, 26, 627
INHEXD, 53, 627
INOCT, 53, 627
Inport, 50, 52, 627
INQUAD, 53, 627
INSTD, 45, 53, 54, 627
INTE, 118, 141, 627
integer

division, 89
integer number

transformation, 253
integer signal

switching, 251
integrator

controlled, 118
simple, 141

interpolation
linear, 91

INTSM, 250, 252, 627
IODRV, 23, 27, 45, 47, 627
IOTASK, 29, 36, 40, 306, 308, 315, 317, 329,

331, 627
ISSW, 251, 627
ISUB, 85, 627
ITOI, 253, 627
ITOS, 293, 627

KDER, 120, 628

LC, 173, 628
least squares method, 115
LEN, 294, 628
LIN, 91, 628
linear

interpolation, 91
linear function

generator, 152
LLC, 174, 345, 628
logical sum, 256
loop

algebraic, 30
feedback, 30

low-pass filter, 122
LPBRK, 13, 30, 105, 628
LPF, 122, 628
LSM, 115

maximum, 123
MB_DASUM, 350
MB_DAXPY, 351
MB_DCOPY, 353
MB_DDOT, 355
MB_DGEMM, 357
MB_DGEMV, 359
MB_DGER, 362

INDEX 647

MB_DNRM2, 364
MB_DROT, 365
MB_DSCAL, 367
MB_DSWAP, 369
MB_DTRMM, 371
MB_DTRMV, 373
MB_DTRSV, 375
MC_AccelerationProfile, 468, 500, 501, 520,

521, 628
MC_AddAxisToGroup, 570, 628
MC_CamIn, 534, 541, 545, 555, 558, 628
MC_CamOut, 534, 538, 628
MC_CombineAxes, 542, 628
MC_GearIn, 545, 548, 553, 555, 558, 628
MC_GearInPos, 548, 628
MC_GearOut, 553, 628
MC_GroupContinue, 590, 592, 628
MC_GroupDisable, 573, 628
MC_GroupEnable, 572, 628
MC_GroupHalt, 585, 628
MC_GroupInterrupt, 590, 592, 628
MC_GroupReadActualAcceleration, 581, 628
MC_GroupReadActualPosition, 579, 628
MC_GroupReadActualVelocity, 580, 628
MC_GroupReadError, 595, 628
MC_GroupReadStatus, 593, 628
MC_GroupReset, 596, 628
MC_GroupSetOverride, 621, 628
MC_GroupSetPosition, 577, 628
MC_GroupStop, 582, 628
MC_Halt, 472, 628
MC_HaltSuperimposed, 473, 628
MC_Home, 474, 505, 628
MC_MoveAbsolute, 476, 489, 490, 513, 531,

549, 628
MC_MoveAdditive, 477, 480, 628
MC_MoveCircularAbsolute, 605, 628
MC_MoveCircularRelative, 609, 628
MC_MoveContinuousAbsolute, 489, 628
MC_MoveContinuousRelative, 492, 628
MC_MoveDirectAbsolute, 613, 628
MC_MoveDirectRelative, 616, 629
MC_MoveLinearAbsolute, 597, 629
MC_MoveLinearRelative, 601, 629

MC_MovePath, 619, 629
MC_MovePath_PH, 629
MC_MoveRelative, 476, 477, 483, 486, 492,

493, 629
MC_MoveSuperimposed, 477, 486, 555, 558,

629
MC_MoveVelocity, 461, 496, 531, 629
MC_PhasingAbsolute, 555, 629
MC_PhasingRelative, 558, 629
MC_PositionProfile, 468, 469, 500, 520,

521, 531, 540, 629
MC_Power, 504, 629
MC_ReadActualPosition, 505, 629
MC_ReadAxisError, 506, 629
MC_ReadBoolParameter, 507, 629
MC_ReadCartesianTransform, 576, 629
MC_ReadParameter, 508, 629
MC_ReadStatus, 510, 629
MC_Reset, 512, 596, 629
MC_SetCartesianTransform, 574, 629
MC_SetOverride, 513, 629
MC_SetPosition, 474
MC_Stop, 472, 515, 629
MC_TorqueControl, 517, 629
MC_UngroupAllAxes, 571, 629
MC_VelocityProfile, 468, 469, 500, 501,

520, 629
MC_WriteBoolParameter, 524, 629
MC_WriteParameter, 525, 629
MCP_AccelerationProfile, 468, 629
MCP_CamIn, 534, 629
MCP_CamTableSelect, 534, 535, 540, 629
MCP_CombineAxes, 542, 629
MCP_GearIn, 545, 629
MCP_GearInPos, 548, 629
MCP_GroupHalt, 629
MCP_GroupInterrupt, 590, 629
MCP_GroupSetOverride, 629
MCP_GroupSetPosition, 577, 629
MCP_GroupStop, 629
MCP_Halt, 472, 629
MCP_HaltSuperimposed, 473, 630
MCP_Home, 474, 630
MCP_MoveAbsolute, 476, 630

648 INDEX

MCP_MoveAdditive, 480, 630
MCP_MoveCircularAbsolute, 630
MCP_MoveCircularRelative, 630
MCP_MoveContinuousAbsolute, 489, 630
MCP_MoveContinuousRelative, 492, 630
MCP_MoveDirectAbsolute, 630
MCP_MoveDirectRelative, 630
MCP_MoveLinearAbsolute, 630
MCP_MoveLinearRelative, 630
MCP_MovePath, 630
MCP_MovePath_PH, 630
MCP_MoveRelative, 483, 630
MCP_MoveSuperimposed, 486, 630
MCP_MoveVelocity, 496, 630
MCP_PhasingAbsolute, 555, 630
MCP_PhasingRelative, 558, 630
MCP_PositionProfile, 500, 630
MCP_SetCartesianTransform, 630
MCP_SetKinTransform_Arm, 630
MCP_SetOverride, 513, 630
MCP_Stop, 515, 630
MCP_TorqueControl, 517, 630
MCP_VelocityProfile, 520, 630
MCU, 175, 233, 630
MDL, 342, 343, 630
MDLI, 343, 630
mean value, 117
MID, 295, 630
minimum, 123
MINMAX, 123, 630
ML_DGEBAK, 377
ML_DGEBAL, 379
ML_DGEBRD, 381
ML_DGECON, 383
ML_DGEES, 386
ML_DGEEV, 388
ML_DGEHRD, 390
ML_DGELQF, 392
ML_DGELSD, 394
ML_DGEQRF, 396
ML_DGESDD, 398
ML_DTRSYL, 400
model

first order, 341

FOPDT, 174, 345
process, 342, 343
second order, 345
state space

continuous, 331
continuous with time delay, 328
discrete, 335
discrete with time delay, 333

modulation
pulse width, 202

MODULE, 23, 27, 31, 630
module, 31

extending the REX Control System, 31
extension, 27

motion control, 15, 108
moving average, 107
MP, 157, 630
MPC, 198
MUL, 92, 630
multiplexer

bitwise, 243
multiplication

by a constant, 80
extended, 75
two signals, 92

MVD, 344, 630
MX_CTODPA, 402
MX_DIM, 404
MX_DSAGET, 405
MX_DSAREF, 407
MX_DSASET, 409
MX_DTRNSP, 411
MX_DTRNSQ, 413
MX_FILL, 415
MX_MAT, 416
MX_RAND, 417
MX_REFCOPY, 419
MX_VEC, 420
MX_WRITE, 421

negation, 255
nonlinear transformation

simple, 124
NOT_, 255, 630

INDEX 649

NSCL, 124, 630

OPC server, 440
operating system, 37
operation

binary, 95
bitwise, 242

operator
relational, 95

optimization
gradient based, 81

OR_, 256, 257, 630
order

driver execution, 27
driver initialization, 27
module execution, 31
module initialization, 31
of task execution, 38
of task initialization, 38

ORHEXD, 257, 630
OROCT, 256, 257, 631
ORQUAD, 257, 631
OSCALL, 37, 430, 631
OUTHEXD, 54, 55, 631
OUTOCT, 54, 55, 631
Outport, 50, 52, 631
output

pulse, 195
three state, 234

output saturation, 205
OUTQUAD, 54, 55, 631
OUTRHEXD, 55, 631
OUTROCT, 55, 631
OUTRQUAD, 55, 631
OUTRSTD, 57, 631
OUTSTD, 47, 53, 54, 57, 631
overhead

control system core, 22

PARA, 311, 631
parameter

tick, 22
input-defined, 312
remote, 306, 308, 315, 317

remote acquirement, 306, 308
PARB, 312, 631
PARI, 312, 631
PARR, 312, 631
PARS, 314, 631
path

full, 35
period

of quick task execution, 33
of task execution, 38

PID
autotuning, 184
controller, 190
with gain scheduling, 182
with input-defined parameters, 193
with moment autotuner, 184
with relay autotuner, 177
with static error, 180

PIDAT, 14, 177, 631
PIDE, 180, 631
PIDGS, 14, 182, 631
PIDMA, 14, 184, 440, 631
PIDU, 177, 180, 182, 184, 190, 193, 233, 440,

462, 631
PIDUI, 193, 631
PJROCT, 296, 631
PJSOCT, 297, 631
POL, 93, 631
polynomial

evaluation, 93
position sensor

absolute, 103
POUT, 195, 631
PRBS, 158, 631
prediction, 115
predictive control, 198
PRGM, 196, 631
priority

dependancy on the operating system,
23

logic, 23
logical, 27, 33
of tasks, 38

process

650 INDEX

model, 342
model with variable parameters, 343

product
Boolean, 236, 237
logical, 236, 237

program
RexView, Halt/Run button, 35
external, 428
RexDraw, 27
RexView, 28
RexView, Enable checkbox, 35
RexView, Reset button, 35

programmable block, 442
programme

RexView, 20
weekly, 269

programmer, 196
PROJECT, 32, 631
project

main file, 22, 27
protocol

UDP/IP, 437
PSMPC, 14, 198, 631
puls, 195
pulse

manually generated, 157
pulse counting

bidirectional, 244
pulse output, 195
pulse width modulation, 202
PWM, 183, 188, 192, 194, 202, 222, 226, 227,

631

QFC, 58, 59, 448, 631
QFD, 55, 57–59, 448, 631
QTASK, 22, 23, 29, 33, 36, 38, 329, 331, 631
quotient, 73

integer, 89

rate limiter, 127
rate monotonic scheduling, 23
RDC, 15, 437, 631
RDFT, 125
real-time

executive, 19, 22
REC, 94, 631
reciprocal value, 94
REGEXP, 298, 631
REL, 95, 631
relative damping coefficient, 109, 122
relay

advance, 165
with hysteresis, 204

remote
data connection, 437
parameter, 306, 308

REPLACE, 299, 632
RexComp

compiler, 30
RexComp compiler, 22
REXLANG, 15, 442, 632
RLIM, 127, 632
RLY, 165, 204, 632
RM_AxesGroup, 564, 570, 595, 632
RM_Axis, 424, 461, 462, 474, 504–508, 515,

527, 529, 570, 632
RM_AxisOut, 527, 529, 632
RM_AxisSpline, 529, 632
RM_Feed, 567, 632
RM_Gcode, 568, 632
RM_GroupTrack, 632
RM_Track, 531, 632
root

square, 98
RS, 258, 632
RTOI, 96, 632
RTOS, 300, 632
RTOV, 423, 429, 632

S1OF2, 128, 632
safety analog input, 131
safety selector, 128
SAI, 128, 130, 131, 632
sample and hold, 140
SAT, 205, 632
SC2FA, 207, 632
schedule

weekly, 269

INDEX 651

SCU, 183, 188, 192, 194, 213, 632
SCUV, 183, 188, 190, 192, 194, 216, 632
SEL, 134, 632
selector

active controller, 220
analog signal, 128, 134
safety, 128
with ramp, 145

SELHEXD, 136, 632
SELOCT, 136, 632
SELQUAD, 134, 136, 632
SELSOCT, 301, 632
SELU, 220, 424, 632
sensor

absolute position, 103
sequence

pseudo-random binary, 158
sequential control, 238, 246
SETPA, 315, 632
SETPB, 317, 632
SETPI, 317, 632
setpoint, 196
SETPR, 317, 321, 632
SETPS, 319, 632
SG, 160, 440, 632
SGI, 160, 632
SGSLP, 320, 324, 632
SHIFTOCT, 138, 632
SHLD, 140, 632
signal generator, 160
SILO, 322, 324, 632
SILOS, 325, 633
simulation

parameters, 34
real-time, 34

Simulink, 34
SINT, 118, 141, 633
SLEEP, 13, 34, 633
SMHCC, 222, 633
SMHCCA, 226, 633
SMTP, 435, 633
SOPDT, 345, 633
SPIKE, 131–133, 142, 633
SQR, 97, 633

SQRT_, 98, 633
square root, 98
square value, 97
SR, 259, 633
SRTF, 35, 633
SSW, 144, 424, 440, 633
stack

size, 27
standard deviation, 117
starting unit, 108
state machine, 238, 246
state space model, 331, 335

with time delay, 328, 333
step controller

with position feedback, 213
with velocity output, 216

STOR, 303, 633
SUB, 67, 99, 633
SubSystem, 52, 633
subsystem

archiving, 271
execution, 35

subtraction
extended, 74
two signals, 99

sum, 66
Boolean, 257
logical, 256, 257

switch
integer signals, 251
simple, 144
unit, 233
with automatic selection of input, 105

SWR, 145, 424, 633
SWU, 220, 233, 633
SWVMR, 424, 633
system

first order, 174, 341
second order, 345

TASK, 22, 23, 29, 33, 36, 38, 329, 331, 633
task

driver-triggered, 29
execution, 35

652 INDEX

execution period, 38
priority, 38
quick, 33
quick, execution period, 33
standard, 38

TIME, 265, 268, 633
time delay, 114, 341, 345

variable, 146
timer

system, 29
weekly, 269

TIMER_, 260, 633
TIODRV, 23, 29, 40, 633
trajectory

time-optimal, 108
transformation

binary number, 253
integer number, 253

transport delay, 114
trend

recording, 279, 282
TRND, 17, 279, 282, 440, 633
TRNDLF, 284
TRNDV, 282, 633
TRNDVLF, 286
TSE, 213, 216, 234, 633
type

input, 16
output, 16
parameter, 16

types
of variables, 16

user programmable block, 442

value
default, 16
maximal, 16
mean, 117
minimal, 16
reciprocal, 94
substitute, 73, 75, 76, 78, 89, 90, 94, 98

valve
motor driven, 344

servo, 344
variance, 117
VDEL, 146, 633
VIN, 55, 57, 59, 60, 448, 633
VOUT, 58, 61, 448, 633
VTOR, 125, 425, 429, 633

weekly
schedule, 269

WSCH, 269, 633
WWW, 42, 633

ZV4IS, 147, 633

INDEX 653

Documentation reference number: 8269

	1 Introduction
	1.1 How to use this manual
	1.2 The function block description format
	1.3 Conventions for variables, blocks and subsystems naming
	1.4 The signal quality corresponding with OPC

	2 EXEC - Real-time executive configuration
	 ARC - The REX system archive
	 EXEC - Real-time executive
	 HMI - Human-Machine Interface Configuration
	 INFO - Description of Algorithm
	 IODRV - The REX control system input/output driver
	 IOTASK - Driver-triggered task of the REX control system
	 LPBRK - Loop break
	 MODULE - Extension module of the REX control system
	 PROJECT - Additional Project Settings
	 QTASK - Quick task of the REX control system
	 SLEEP - Timing in Simulink
	 SRTF - Set run-time flags
	 OSCALL - Operating system calls
	 TASK - Standard task of the REX control system
	 TIODRV - The REX control system input/output driver with tasks
	 WWW - Internal Web Server Content

	3 INOUT - Input and output blocks
	 Display - Numeric display of input values
	 From, INSTD - Signal connection or input
	 Goto, OUTSTD - Signal source or output
	 GotoTagVisibility - Visibility of the signal source
	 Inport, Outport - Input and output port
	 SubSystem - Subsystem block
	 INQUAD, INOCT, INHEXD - Multi-input blocks
	 OUTQUAD, OUTOCT, OUTHEXD - Multi-output blocks
	 OUTRQUAD, OUTROCT, OUTRHEXD - Multi-output blocks with verification
	 OUTRSTD - Output block with verification
	 QFC - Quality flags coding
	 QFD - Quality flags decoding
	 VIN - Validation of the input signal
	 VOUT - Validation of the output signal

	4 MATH - Math blocks
	 ABS_ - Absolute value
	 ADD - Addition of two signals
	 ADDQUAD, ADDOCT, ADDHEXD - Multi-input addition
	 CNB - Boolean (logic) constant
	 CNE - Enumeration constant
	 CNI - Integer constant
	 CNR - Real constant
	 DIF_ - Difference
	 DIV - Division of two signals
	 EAS - Extended addition and subtraction
	 EMD - Extended multiplication and division
	 FNX - Evaluation of single-variable function
	 FNXY - Evaluation of two-variables function
	 GAIN - Multiplication by a constant
	 GRADS - Gradient search optimization
	 IADD - Integer addition
	 ISUB - Integer subtraction
	 IMUL - Integer multiplication
	 IDIV - Integer division
	 IMOD - Remainder after integer division
	 LIN - Linear interpolation
	 MUL - Multiplication of two signals
	 POL - Polynomial evaluation
	 REC - Reciprocal value
	 REL - Relational operator
	 RTOI - Real to integer number conversion
	 SQR - Square value
	 SQRT_ - Square root
	 SUB - Subtraction of two signals

	5 ANALOG - Analog signal processing
	 ABSROT - Processing data from absolute position sensor
	 ASW - Switch with automatic selection of input
	 AVG - Moving average filter
	 AVS - Motion control unit
	 BPF - Band-pass filter
	 CMP - Comparator with hysteresis
	 CNDR - Nonlinear conditioner
	 DEL - Delay with initialization
	 DELM - Time delay
	 DER - Derivation, filtering and prediction from the last n+1 samples
	 EVAR - Moving mean value and standard deviation
	 INTE - Controlled integrator
	 KDER - Derivation and filtering of the input signal
	 LPF - Low-pass filter
	 MINMAX - Running minimum and maximum
	 NSCL - Nonlinear scaling factor
	 RDFT - Running discrete Fourier transform
	 RLIM - Rate limiter
	 S1OF2 - One of two analog signals selector
	 SAI - Safety analog input
	 SEL - Analog signal selector
	 SELQUAD, SELOCT, SELHEXD - Analog signal selectors
	 SHIFTOCT - Data shift register
	 SHLD - Sample and hold
	 SINT - Simple integrator
	 SPIKE - Spike filter
	 SSW - Simple switch
	 SWR - Selector with ramp
	 VDEL - Variable time delay
	 ZV4IS - Zero vibration input shaper

	6 GEN - Signal generators
	 ANLS - Controlled generator of piecewise linear function
	 BINS - Controlled binary sequence generator
	 BIS - Binary sequence generator
	 MP - Manual pulse generator
	 PRBS - Pseudo-random binary sequence generator
	 SG, SGI - Signal generators

	7 REG - Function blocks for control
	 ARLY - Advance relay
	 FLCU - Fuzzy logic controller unit
	 FRID - * Frequency response identification
	 I3PM - Identification of a three parameter model
	 LC - Lead compensator
	 LLC - Lead-lag compensator
	 MCU - Manual control unit
	 PIDAT - PID controller with relay autotuner
	 PIDE - PID controller with defined static error
	 PIDGS - PID controller with gain scheduling
	 PIDMA - PID controller with moment autotuner
	 PIDU - PID controller unit
	 PIDUI - PID controller unit with variable parameters
	 POUT - Pulse output
	 PRGM - Setpoint programmer
	 PSMPC - Pulse-step model predictive controller
	 PWM - Pulse width modulation
	 RLY - Relay with hysteresis
	 SAT - Saturation with variable limits
	 SC2FA - State controller for 2nd order system with frequency autotuner
	 SCU - Step controller with position feedback
	 SCUV - Step controller unit with velocity input
	 SELU - Controller selector unit
	 SMHCC - Sliding mode heating/cooling controller
	 SMHCCA - Sliding mode heating/cooling controller with autotuner
	 SWU - Switch unit
	 TSE - Three-state element

	8 LOGIC - Logic control
	 AND_ - Logical product of two signals
	 ANDQUAD, ANDOCT, ANDHEXD - Logical product of multiple signals
	 ATMT - Finite-state automaton
	 BDOCT, BDHEXD - Bitwise demultiplexers
	 BITOP - Bitwise operation
	 BMOCT, BMHEXD - Bitwise multiplexers
	 COUNT - Controlled counter
	 EATMT - Extended finite-state automaton
	 EDGE_ - Falling/rising edge detection in a binary signal
	 INTSM - Integer number bit shift and mask
	 ISSW - Simple switch for integer signals
	 INTSM - Integer number bit shift and mask
	 ITOI - Transformation of integer and binary numbers
	 NOT_ - Boolean complementation
	 OR_ - Logical sum of two signals
	 ORQUAD, OROCT, ORHEXD - Logical sum of multiple signals
	 RS - Reset-set flip-flop circuit
	 SR - Set-reset flip-flop circuit
	 TIMER_ - Multipurpose timer

	9 TIME - Blocks for handling time
	 DATE_ - Current date
	 DATETIME - Get, set and convert time
	 TIME - Current time
	 WSCH - Weekly schedule

	10 ARC - Data archiving
	10.1 Functionality of the archiving subsystem
	10.2 Generating alarms and events
	 ALB, ALBI - Alarms for Boolean value
	 ALN, ALNI - Alarms for numerical value
	10.3 Trends recording
	 ACD - Archive compression using Delta criterion
	 TRND - Real-time trend recording
	 TRNDV - Real-time trend recording with vector input
	 TRNDLF - * Real-time trend recording (lock-free)
	 TRNDVLF - * Real-time trend recording (for vector signals, lock-free)
	10.4 Archive management
	 AFLUSH - Forced archive flushing

	11 STRING - Blocks for string operations
	 CNS - String constant
	 CONCAT - * Concat string by pattern
	 FIND - Find a Substring
	 ITOS - Integer number to string conversion
	 LEN - String length
	 MID - Substring Extraction
	 PJROCT - * Parse JSON string (real output)
	 PJSOCT - * Parse JSON string (string output)
	 REGEXP - Regular expresion parser
	 REPLACE - Replace substring
	 RTOS - Real Number to String Conversion
	 SELSOCT - * String selector
	 STOR - String to real number conversion

	12 PARAM - Blocks for parameter handling
	 GETPA - Block for remote array parameter acquirement
	 GETPR, GETPI, GETPB - Blocks for remote parameter acquirement
	 GETPS - * Block for remote string parameter acquirement
	 PARA - Block with input-defined array parameter
	 PARR, PARI, PARB - Blocks with input-defined parameter
	 PARS - * Block with input-defined string parameter
	 SETPA - Block for remote array parameter setting
	 SETPR, SETPI, SETPB - Blocks for remote parameter setting
	 SETPS - * Block for remote string parameter setting
	 SGSLP - Set, get, save and load parameters
	 SILO - Save input value, load output value
	 SILOS - Save input string, load output string

	13 MODEL - Dynamic systems simulation
	 CDELSSM - Continuous state space model of a linear system with time delay
	 CSSM - Continuous state space model of a linear system
	 DDELSSM - Discrete state space model of a linear system with time delay
	 DSSM - Discrete state space model of a linear system
	 FMUCS - * Import modelu FMU CS (pro Co-Simulation)
	 FMUINFO - * Imformace o importovaném modelu FMU
	 FOPDT - First order plus dead-time model
	 MDL - Process model
	 MDLI - Process model with input-defined parameters
	 MVD - Motorized valve drive
	 SOPDT - Second order plus dead-time model

	14 MATRIX - Blocks for matrix and vector operations
	 CNA - Array (vector/matrix) constant
	 MB_DASUM - Sum of the absolute values
	 MB_DAXPY - Performs y := a*x + y for vectors x,y
	 MB_DCOPY - Copies vector x to vector y
	 MB_DDOT - Dot product of two vectors
	 MB_DGEMM - Performs C := alpha*op(A)*op(B) + beta*C, where op(X) = X or op(X) = X^T
	 MB_DGEMV - Performs y := alpha*A*x + beta*y or y := alpha*A^T*x + beta*y
	 MB_DGER - Performs A := alpha*x*y^T + A
	 MB_DNRM2 - Euclidean norm of a vector
	 MB_DROT - Plain rotation of a vector
	 MB_DSCAL - Scales a vector by a constant
	 MB_DSWAP - Interchanges two vectors
	 MB_DTRMM - Performs B := alpha*op(A)*B or B := alpha*B*op(A), where op(X) = X or op(X) = X^T for triangular matrix A
	 MB_DTRMV - Performs x := A*x or x := A^T*x for triangular matrix A
	 MB_DTRSV - Solves one of the system of equations A*x = b or A^T*x = b for triangular matrix A
	 ML_DGEBAK - Backward transformation to ML_DGEBAL of left or right eigenvectors
	 ML_DGEBAL - Balancing of a general real matrix
	 ML_DGEBRD - Reduces a general real matrix to bidiagonal form by an orthogonal transformation
	 ML_DGECON - Estimates the reciprocal of the condition number of a general real matrix
	 ML_DGEES - Computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
	 ML_DGEEV - Computes the eigenvalues and, optionally, the left and/or right eigenvectors
	 ML_DGEHRD - Reduces a real general matrix A to upper Hessenberg form
	 ML_DGELQF - Computes an LQ factorization of a real M-by-N matrix A
	 ML_DGELSD - Computes the minimum-norm solution to a real linear least squares problem
	 ML_DGEQRF - Computes an QR factorization of a real M-by-N matrix A
	 ML_DGESDD - Computes the singular value decomposition (SVD) of a real M-by-N matrix A
	 ML_DTRSYL - Solves the real Sylvester matrix equation for quasi-triangular matrices A and B
	 MX_CTODPA - Discretizes continuous model given by (A,B) to (Ad,Bd) using Pade approximations
	 MX_DIM - Matrix/Vector dimensions
	 MX_DSAGET - Set subarray of A into B
	 MX_DSAREF - Set reference to subarray of A into B
	 MX_DSASET - Set A into subarray of B
	 MX_DTRNSP - General matrix transposition: B := alpha*A^T
	 MX_DTRNSQ - Square matrix in-place transposition: A := alpha*A^T
	 MX_FILL - Fill real matrix or vector
	 MX_MAT - Matrix data storage block
	 MX_RAND - Randomly generated matrix or vector
	 MX_REFCOPY - Copies input references of matrices A and B to their output references
	 MX_VEC - Vector data storage block
	 MX_WRITE - Write a Matrix/Vector to the console/system log
	 RTOV - Vector multiplexer
	 SWVMR - Vector/matrix/reference signal switch
	 VTOR - Vector demultiplexer

	15 SPEC - Special blocks
	 EPC - External program call
	 HTTP - HTTP GET or POST request (obsolete)
	 HTTP2 - Block for generating HTTP GET or POST requests
	 SMTP - Send email message via SMTP
	 RDC - Remote data connection
	 REXLANG - User programmable block

	16 MC_SINGLE - Motion control - single axis blocks
	 RM_Axis - Motion control axis
	 MC_AccelerationProfile, MCP_AccelerationProfile - Acceleration profile
	 MC_Halt, MCP_Halt - Stopping a movement (interruptible)
	 MC_HaltSuperimposed, MCP_HaltSuperimposed - Stopping a movement (superimposed and interruptible)
	 MC_Home, MCP_Home - Homing
	 MC_MoveAbsolute, MCP_MoveAbsolute - Move to position (absolute coordinate)
	 MC_MoveAdditive, MCP_MoveAdditive - Move to position (relative to previous motion)
	 MC_MoveRelative, MCP_MoveRelative - Move to position (relative to execution point)
	 MC_MoveSuperimposed, MCP_MoveSuperimposed - Superimposed move
	 MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute - Move to position (absolute coordinate)
	 MC_MoveContinuousRelative, MCP_MoveContinuousRelative - Move to position (relative to previous motion)
	 MC_MoveVelocity, MCP_MoveVelocity - Move with constant velocity
	 MC_PositionProfile, MCP_PositionProfile - Position profile
	 MC_Power - Axis activation (power on/off)
	 MC_ReadActualPosition - Read actual position
	 MC_ReadAxisError - Read axis error
	 MC_ReadBoolParameter - Read axis parameter (bool)
	 MC_ReadParameter - Read axis parameter
	 MC_ReadStatus - Read axis status
	 MC_Reset - Reset axis errors
	 MC_SetOverride, MCP_SetOverride - Set override factors
	 MC_Stop, MCP_Stop - Stopping a movement
	 MC_TorqueControl, MCP_TorqueControl - Torque/force control
	 MC_VelocityProfile, MCP_VelocityProfile - Velocity profile
	 MC_WriteBoolParameter - Write axis parameter (bool)
	 MC_WriteParameter - Write axis parameter
	 RM_AxisOut - Axis output
	 RM_AxisSpline - Commanded values interpolation
	 RM_Track - Tracking and inching

	17 MC_MULTI - Motion control - multi axis blocks
	 MC_CamIn, MCP_CamIn - Engage the cam
	 MC_CamOut - Disengage the cam
	 MCP_CamTableSelect - Cam definition
	 MC_CombineAxes, MCP_CombineAxes - Combine the motion of 2 axes into a third axis
	 MC_GearIn, MCP_GearIn - Engange the master/slave velocity ratio
	 MC_GearInPos, MCP_GearInPos - Engage the master/slave velocity ratio in defined position
	 MC_GearOut - Disengange the master/slave velocity ratio
	 MC_PhasingAbsolute, MCP_PhasingAbsolute - Phase shift in synchronized motion (absolute coordinates)
	 MC_PhasingRelative, MCP_PhasingRelative - Phase shift in synchronized motion (relative coordinates)

	18 MC_COORD - Motion control - coordinated movement blocks
	 RM_AxesGroup - Axes group for coordinated motion control
	 RM_Feed - * MC Feeder ???
	 RM_Gcode - * CNC motion control
	 MC_AddAxisToGroup - Adds one axis to a group
	 MC_UngroupAllAxes - Removes all axes from the group
	 MC_GroupEnable - Changes the state of a group to GroupEnable
	 MC_GroupDisable - Changes the state of a group to GroupDisabled
	 MC_SetCartesianTransform - Sets Cartesian transformation
	 MC_ReadCartesianTransform - Reads the parameter of the cartesian transformation
	 MC_GroupSetPosition, MCP_GroupSetPosition - Sets the position of all axes in a group
	 MC_GroupReadActualPosition - Read actual position in the selected coordinate system
	 MC_GroupReadActualVelocity - Read actual velocity in the selected coordinate system
	 MC_GroupReadActualAcceleration - Read actual acceleration in the selected coordinate system
	 MC_GroupStop - Stopping a group movement
	 MC_GroupHalt - Stopping a group movement (interruptible)
	 MC_GroupInterrupt, MCP_GroupInterrupt - Read a group interrupt
	 MC_GroupContinue - Continuation of interrupted movement
	 MC_GroupReadStatus - Read a group status
	 MC_GroupReadError - Read a group error
	 MC_GroupReset - Reset axes errors
	 MC_MoveLinearAbsolute - Linear move to position (absolute coordinates)
	 MC_MoveLinearRelative - Linear move to position (relative to execution point)
	 MC_MoveCircularAbsolute - Circular move to position (absolute coordinates)
	 MC_MoveCircularRelative - Circular move to position (relative to execution point)
	 MC_MoveDirectAbsolute - Direct move to position (absolute coordinates)
	 MC_MoveDirectRelative - Direct move to position (relative to execution point)
	 MC_MovePath - General spatial trajectory generation
	 MC_GroupSetOverride - Set group override factors

	A Licensing options
	B Licensing of individual function blocks
	C Error codes of the REX Control System
	 Bibliography
	 Index

